Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T02:32:55.941Z Has data issue: false hasContentIssue false

ZrO2 Doped with Cobalt Nanoparticles to Detect UV Radiatiion

Published online by Cambridge University Press:  08 February 2012

Gerardo Villa Sánchez
Affiliation:
Instituto Nacional de Investigaciones Nucleares; Carretera México-Toluca S/N, La Marquesa; Ocoyoacac, Estado de México; C. P. 52750; México. Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón y Tollocan, Toluca, México 50110, México
Demetrio Mendoza Anaya*
Affiliation:
Instituto Nacional de Investigaciones Nucleares; Carretera México-Toluca S/N, La Marquesa; Ocoyoacac, Estado de México; C. P. 52750; México.
Claudia Gutiérrez-Wing
Affiliation:
Instituto Nacional de Investigaciones Nucleares; Carretera México-Toluca S/N, La Marquesa; Ocoyoacac, Estado de México; C. P. 52750; México.
Pedro R. González Martínez.
Affiliation:
Instituto Nacional de Investigaciones Nucleares; Carretera México-Toluca S/N, La Marquesa; Ocoyoacac, Estado de México; C. P. 52750; México.
Oscar F. Olea Mejía
Affiliation:
Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón y Tollocan, Toluca, México 50110, México
Get access

Abstract

This paper reports the synthesis and characterization of the ZrO2:Co nanosystem, by incorporation of Co nanoparticles (CoNP) into tetragonal and monoclinic zirconia. ZrO2 was synthesized by a sol-gel process, while cobalt nanoparticles were obtained through a colloidal method by chemical reduction of a metal precursor. CoNP were incorporated by two different approaches: during the synthesis of the ZrO2 and by classical impregnation of CoNP on zirconium oxide. The size of Cobalt nanoparticles was controlled through the concentration of reducing agent (NaBH4) and passivanting agent (1-dodecanethiol). According to SEM and TEM analysis, the diameter of the zirconium oxide particles depends on the CoNP concentration added; the particle size for pure zirconia treated at 500°C is 200 nm and 180 nm for ZrO2:Co. X-Ray diffraction showed presence of the tetragonal and monoclinic zirconia, but the abundance of each one depends on the Co nanoparticles and thermally treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salas, P., De la Rosa-Cruz, E., Mendoza-Anaya, D., González, P., Rodríguez, R., Castaño, V. M.. Materials Letters 45,241245 (2000).Google Scholar
2. De la Rosa Cruz, E., Díaz Torres, L.A., Salas, P., Mendoza, D., Hernández, J.M., Castaño, V.M.. Optical Materials 19,195199 (2002).Google Scholar
3. Hristov, H., Arhangelova, N., Velev, V., Penev, I., Bello, M., Moschini, G. and Uzunov, N.. Journal of Physics: Conference Series 253, 012025 (2010).Google Scholar
4. Lai, Lee-Jene Sheu, Lin, Hwo-Shuenn, Hsu, Yao-Kwang, Chu, Ya-Chuan, -Chi, Tieh. J. Appl. Phys. 10, 103508– (2006).Google Scholar
5. Villa Sánchez, G., Mendoza Anaya, D., Gutiérrez Wing, C, Pérez Hernández, R., González Martínez, P.R., Ángeles Chávez, C.. Nanotechnology 18, 265703 (2007).Google Scholar
6. Mendoza-Anaya, D., Ángeles, C., Salas, P., Rodríguez, R and Castaño, V. M.. Nanotechnology 14, L19–L22 (2003).Google Scholar
7. EtaeIl, T.H. and Flengas, S.N., Chem. Rev. 70, 339 (1970).Google Scholar
8. Mercera, P.D.L., van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J. and Ross, J.R.H.. Applied Catalysis 78, 7996 (1991).Google Scholar