Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T02:30:28.702Z Has data issue: false hasContentIssue false

Application of Channeling to Defect Studies in Crystals

Published online by Cambridge University Press:  15 February 2011

W. K. Chu*
Affiliation:
IBM General Technology Division, East Fishkill, Hopewell Junction, New York 12533
Get access

Abstract

Channeling of fast, light ions in crystals has been widely used as a tool for studying crystal defects. Backscattering yield measurement on ions incident along major axial or planar crystalline directions provides information on the depth distribution of the structural defects in the first few microns. The channeling technique in defect detection is not as sensitive as Transmission Electron Spectroscopy, nor is it accurate in measuring the absolute numbers of defect density. Channeling measurements can give only an indication of the degree of lattice disorder. It is possible to distinguish one type of defect from another by carefully studying the energy dependence of the dechanneling. The dechanneling interpretation is not always unique, and in practice it is difficult to obtain structure information through that method. Despite these negative qualities, channeling is an attractive and unique method in certain defect studies. For example, it is sensitive for studying the lattice location of impurity atoms at substitutional or interstitial sites. Clustering of substitutional impurity atoms will show a displacement of the impurity atoms from lattice sites due to the change of bond distance. Channeling is sensitive for measuring impurity displacement as small as 0.1A°. This has been demonstrated in the study of arsenic clustering formation in Si. Interfacial relaxation and contraction in a multi-layered structure made by molecular beam epitaxy has been detected by dechanneling along various axial directions. Channeling study on surface and interface structures has developed over the past few years. In this paper, I will use examples to illustrate the unique features of the channeling technique and its application to defect studies in single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stark, J., Physik. Z. 13, 973 (1912).Google Scholar
2. Robinson, M. T. and Oen, O. S., Phys. Rev. 132, 2385 (1963).Google Scholar
3. Lindhard, J., Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 34 No. 14 (1965).Google Scholar
4. Gemmell, D. S., Rev. Mod Phys. 46, N. 1, 129 (1974).Google Scholar
5. Channeling, Ed. Morgan, D. V., John Wiley and Sons, NY (1973).Google Scholar
6. Eisen, F. H., Chapter 14 of Reference 5.Google Scholar
7. Nielson, R. S., Chapter 9 of Reference 5.Google Scholar
8. B∅gh, E., Chapter 15 of Reference 5.Google Scholar
9. Mayer, J. W., Chapter 16 of Reference 5.Google Scholar
10. Davies, J. A., Chapter 13 of Reference 5.Google Scholar
11. Chu, W. K., Mayer, J. W. and Nicolet, M. A., Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
12. Chu, W. K., Mayer, J. W., Nicolet, M. A., Buck, T. M., Amsel, G. and Eisen, F., Thin Solid Films 17, 1 (1973).Google Scholar
13. Csepregi, L., Mayer, J. W. and Sigmon, T. W., Appl. Phys. Lett. 29, 92 (1976).Google Scholar
14. Chu, W. K., Kastl, R. H., Lever, R. F., Mader, S. and Masters, B. J., Phys., Rev. B16, 3851 (1977).CrossRefGoogle Scholar
15. Foti, G., Baeri, P., Rimini, E. and Campisano, S. U., J. Appl. Phys. 47, 5206 (1976).Google Scholar
16. Quēre, Y., Radiation Effects 28, 253 (1976).Google Scholar
17. Foti, G., Picraux, S. T. and Campisano, S. U., in Ion Implantation in Semiconductor 1976, Ed by Chernow, F., Borders, J. A. and Brice, D. K., Plenum Press, p. 247 (1977).Google Scholar
18. Quērē, Y. Phys. Stat. Sol. 30 713 (1968).Google Scholar
19. Campisano, S. U., Foti, G., Rimini, E. and Picraux, S. T. Nucl. Inst. and Methods 149, 371 (1978).CrossRefGoogle Scholar
20. Foti, G., Csepregi, L., Kennedy, E. F., Mayer, J. W., Pronko, P. P. and Rechtin, M. D., Phil. Mag. 37, 591 (1977).Google Scholar
21. Foti, G., Csepregi, L., Kennedy, E. F., Pronko, P. and Mayer, J. W., Phys. Letter 64A, 265 (1977).Google Scholar
22. Alexander, R. B. and Poate, J. M., Rad Effects 12, 211 (1972).Google Scholar
23. Bugeat, J. P., Chami, A. C. and Ligeon, E., Phys. Letter 58A, 127 (1976).Google Scholar
24. Carstangen, H. D. and Sizmann, R., Phys. Letter 40A, 93 (1972).Google Scholar
25. Picraux, S. T. and Vook, F. L., Phys. Rev. Letter 33, 1216 (1974).Google Scholar
26. Chu, W. K. and Masters, B. J. in Laser-Solid Interactions and Laser Processing - 1978, edited by Ferris, S. D., Leamy, J. H. and Poate, J. M. AIP Conf. Proc. 50, 305 (1979).Google Scholar
27. Chu, W. K. in Laser and Electron Beam processing of Electronic Materials Edited by Anderson, C. L., Celler, G. K. and Rozgonyi, G. A., The Electrochemical Soc. Proc. 801, 361 (1980).Google Scholar
28. Chu, W. K., Appl. Phys. Letter 36, 273 (1980).Google Scholar
29. Lurio, A., Keller, J. and Chu, W. K., Nucl. Ins. and Methods, 149, 387, (1978).Google Scholar
30. Picraux, S. T., Brown, W. L. and Gibson, W. M., Phys. Rev. B6, 1382 (1972).Google Scholar
31. Swanson, M. L. (this conference).Google Scholar
32. Swanson, M. L., Davies, J. A., Quenneville, A. F., Saris, F. W. and Wiggers, L. W., Rad. Effects, 35, 51 (1978).Google Scholar
33. B∅gh, E. and Uggerhoj, E., Nucl. Inst. Methods 38, 216 (1965).Google Scholar
34. Feldman, L. C., ISISS 1979 Surface Science. Recent Progress and Perspectives, CRC Press Inc., Cleveland, Ohio (1980).Google Scholar
35. Stensgaard, I., Feldman, L. C. and Silverman, P. J., Phys. Rev. Letter 42, 247 (1979).Google Scholar
36. Davies, J. A., Jackson, D. P., Matsunami, N., Norton, P. R. and Anderson, J. U., Surface Sci. 78, 274 (1978).Google Scholar
37. B∅gh, E. and Stensgaard, I., Phys. Lett. 65A, 357 (1978).Google Scholar
38. Van der Veen, J., Smeenk, R. G. and Saris, F. W., Surf. Sci. 79, 219 (1979).Google Scholar
39. Appleton, B. R., Zehner, D. M., Noggle, T. S., Miller, J. W., Schoww, O. E. III, Jenkins, L. H. and Barrett, J. H. in Ion Beam Surface Layer Analysis, Volume 2, edited by Meyer, O., Linker, G. and Kappeler, F., p. 607, Plenum, New York (1976).Google Scholar
40. Appleton, B. R., this symposium, this proceeding.Google Scholar
41. Feldman, L. C., Silverman, P. J., Williams, J. S., Jackman, T. E. and Stensgaard, I., Phys, Rev. Letter 41, 1396 (1978).Google Scholar
42. Cheung, N. W., Feldman, L. C., Silverman, P. J. and Stensgaard, I., Appl. Phys. Letter 35, 859 (1979).Google Scholar
43. Cheung, N. W., Culbertson, R. J., Feldman, L. C., Silverman, P. J., West, K. W. and Mayer, J. W., Phys. Rev. Letter 45, 120 (1980).Google Scholar
44. Chiu, K. C. R., Poate, J. M., Feldman, L. C. and Doherty, C. J., Appl. Phys. Letter 36, 544 (1980).Google Scholar
45. Saris, F. W., Chu, W. K., Chang, C. A., Ludeke, R. and Esaki, L., Appl. Phys. Letter (to be published).Google Scholar
46. Chang, C. A., Ludeke, R., Chang, L. L. and Esaki, L., Appl. Phys. Letter 31, 759 (1977).Google Scholar
47. Picraux, S. T., this symposium, this proceeding.Google Scholar