Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T17:18:32.030Z Has data issue: false hasContentIssue false

Biochemical IC Chips Fabricated by Hybrid Microstereolithography

Published online by Cambridge University Press:  11 February 2011

Koji Ikuta
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Shoji Maruo
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Tadahiro Hasegawa
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Takao Adachi
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Atsushi Takahashi
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Kota Ikeda
Affiliation:
Department of Micro System Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Get access

Abstract

The world's first microstereolithography named “IH process” was developed by Ikuta et al. in 1992. Several types of micro stereo lithography including Hybrid-IH process, Super-IH process and Two-photon IH process, have been also developed. Three-dimensional (3D) resolution has reached to 140 nm in the two-photon IH process. The super-IH process and the two-photon process enable direct writing of movable micromechanisms without assembling process or sacrificial layer technique. The hybrid-IH process provides various types of composite devices with other functional elements such as actuators and sensors. These IH processes can be widely used for making polymeric microdevices. We have applied these techniques to create new micro chemical device named “Biochemical IC Chip” proposed by Ikuta et al. in 1994. IH process enables to make the biochemical IC chip including real 3D micro fluidic channels. Various kinds of Biochemical IC chip such as micro pumps, switching valves, reactors, concentrators, have already been fabricated. In chip cell-free protein synthesis has been demonstrated by using biochemical IC chips. The biochemical IC chips will open new bioscience and medicine based on innovative technology. In this paper, we introduce several types of IH process and its application to biochemical IC chips.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikuta, K. and Hirowatari, K., Proc. of IEEE International Workshop on Micro Electro Mechanical System (MEMS 93), 4247 (1993).Google Scholar
2. Ikuta, K., Ogata, T., Tsuboi, M., Kojima, S., Proc. of MEMS 96, pp. 301306 (1996).Google Scholar
3. Ikuta, K., Maruo, S., Fujisawa, T., Yamada, A., Proc. of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS 99), pp. 376381 (1999).Google Scholar
4. Ikuta, K., Hasegawa, T., Adachi, T. and Maruo, S., Proc. of MEMS 2000, pp. 739744 (2000).Google Scholar
5. Maruo, S. and Ikuta, K., Proc. of MEMS 2001, 151154 (2001).Google Scholar
6. Takagi, T. and Nakajima, N., Proc. of MEMS 93, 173178 (1993).Google Scholar
7. Bertsch, A., Zissi, S., Jezequel, J. Y., Corbel, S. and Andre, J. C., Microsystem Technologies 3, 4247 (1997).Google Scholar
8. Ikuta, K., Maruo, S. and Kojima, S., Proc. of MEMS 98, 290295 (1998).Google Scholar
9. Maruo, S. and Ikuta, K., Applied Physics Letters 76, 26562658 (2000).Google Scholar
10. Maruo, S. and Ikuta, K., Sensors and Actuators A 100, 7076 (2002).Google Scholar
11. Maruo, S., Nakamura, O. and Kawata, S., Optics Letters 22, 132134 (1997).Google Scholar
12. Maruo, S. and Kawata, S., Journal of Microelectromechanical Systems 7, 411415 (1998).Google Scholar
13. Maruo, S. and Ikuta, K., Proc. of 10th International Conference on Solid-State Sensors and Actuators (Transducers 99), 12321235 (1999).Google Scholar
14. Maruo, S., Ikuta, K. and Korogi, H., Proc. of SPIE 3937, 106112 (2000).Google Scholar
15. Maruo, S. and Ikuta, K., Proc. of MEMS 2001, 594597 (2001).Google Scholar
16. Cumpston, B. H., Ananthavel, S. P., Barlow, S., Dyer, D. L., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Kuebler, S. M., Lee, I. -Y. S., McCord-Maughon, D., Qin, J., Reckel, H., Rumi, M., Wu, X., Marder, S. R. and Perry, J. W., Nature 398, 5154 (1999).Google Scholar
17. Kawata, S., Sun, H. B., Tanaka, T., and Takada, K., Nature 412, 697698 (2001).Google Scholar
18. Maruo, S., Ikuta, K. and Korogi, H., Proc. of the IEEE Conference on Nanotechnology (IEEE-NANO 2001), 507512 (2001).Google Scholar
19. Maruo, S., Ikuta, K. and Korogi, H., Proc. of Micro Total Analysis Systems 2002 (μ-TAS 2002), 937939 (2002).Google Scholar
20. Ikuta, K., Hirowatari, K. and Ogata, T., Proc. of MEMS 94, 16 (1994).Google Scholar
21. Ikuta, K., Maruo, S., Fukaya, Y. and Fujisawa, T., Proc. of MEMS 98, 131136 (1998).Google Scholar
22. Ikuta, K., Sasaki, Y., Maegawa, H., Maruo, S. and Hasegawa, T., Proc. of μ-TAS 2002, 745747 (2002).Google Scholar
23. Ikuta, K., Takahashi, A. and Maruo, S., Proc. of MEMS 2001, 455458 (2001).Google Scholar
24. Ikuta, K., Takahashi, A., Ikeda, K. and Maruo, S., Proc. of μ-TAS 2002, 3739 (2002).Google Scholar
25. Wise, K.D. and Najafi, K., Science 254, 13351342 (1991).Google Scholar
26. Galajda, P. and Ormos, P., Appl. Phys. Lett. 78, 249251 (2001).Google Scholar
27. Ikuta, K., Proc. of Artificial Life V, 1724 (1996).Google Scholar
28. Hasegawa, T. and Ikuta, K., Proc. of μ-TAS 2001, 377378 (2001).Google Scholar
29. Hasegawa, T. and Ikuta, K., Proc. of μ-TAS 2002, 694696 (2002).Google Scholar
30. Ikuta, K., Hasegawa, T. and Adachi, T., Proc. of Transducers 01, 916919 (2001).Google Scholar