Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:48:54.674Z Has data issue: false hasContentIssue false

Chemical Route Fabricated Magnetic Structure Exhibiting a Negative Permeability at Infrared Frequencies

Published online by Cambridge University Press:  01 February 2011

Hui Liu
Affiliation:
ermrlab@nwpu.edu.cnInstitute of Electrorheological TechnologyXi'an Shaanxi 710072China, People's Republic of
Xiaopeng Zhao
Affiliation:
xpzhao@nwpu.edu.cn, Institute of Electrorheological Technology, Xi'an, Shaanxi, 710072, China, People's Republic of
Get access

Abstract

We propose a quasi-periodic dendritic resonant magnetic model that can be used for the realization of the negative permeability at infrared frequencies. The numerical simulation exhibits a magnetic response when the incident light is perpendicular to the plane of the model. The copper dendritic structures are prepared by the electro-deposition method. And the transmission spectrum of this dendritic structure shows a magnetic response at infrared frequencies with a maximum transmission ¨C7.95dB. Further studies demonstrate that the magnetic response relate to the fractal dimension of the dendritic structure to a certain extent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veselago, V. G., Sov. Phys. Usp. 10, 509(1968).Google Scholar
2. Pendry, J. B. and Smith, D. R., Physics Today 57, 37(2004).Google Scholar
3. Pendry, J. B., Holden, A. J., Robbins, D. J., IEEE Trans. Microwave Theory Tech. 47, 2075(1999).Google Scholar
4. Linden, S., Enkrich, C., Wegener, M., et al. Science 306, 1351(2004).Google Scholar
5. Katsarakis, N., Koschny, T., Kafesaki, M., Appl. Phys. Lett. 84, 2943(2004).Google Scholar
6. Balmaz, P. G. and Martin, O. J. F., J. Appl. Phys. 92, 2929(2004).Google Scholar
7. Smith, D. R., Padilla, W. J., Vier, D. C., et al. Phys. Rev. Lett. 84, 4184(2000).Google Scholar
8. Shelby, R. A., Smith, D. R., Schultz, S., Science 292, 77(2001).Google Scholar
9. Balmaz, P. G. and Martin, O. J. F., J. Appl. Phys. 92, 2929(2002).Google Scholar
10. Baena, J. D., Marqué, R. and Medina, F., Phys. Rev.B 69, 014402(2004).Google Scholar
11. Wu, S. C., Appl. Phys. Lett. 84, 1982(2004).Google Scholar
12. Tao, J., Fu, H., Ran, L. X., Appl. Phys. Lett. 84, 1357(2004).Google Scholar
13. Chen, H., Ran, L., Wang, D., Appl. Phys. Lett. 88, 031908(2006).Google Scholar
14. Zhang, S., Fan, W. J., Minhas, B. K., Phys. Rev. Lett. 94, 037402(2004).Google Scholar
15. Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Nature 438, 335(2005).Google Scholar
16. Hibbert, D. B., Melrose, J. R., Phys. Rev. A 38, 1306(1998).Google Scholar
17. Kang, L., Luo, C. R., Zhao, Q., Song, J., Fu, Q. H., Zhao, X. P., Chin. Sci. Bull. 49, 2407(2004).Google Scholar
18. Zhao, X. P., Zhao, Q., Kang, L., Song, J., Fu, Q. H.. Phys. Lett. A 87, 346(2005).Google Scholar
19. Kafesaki, M., Koschny, Th, Penciu, R. S., et al. J. Opt A: Appl. Opt. 7, S12(2005).Google Scholar
20.This program is downloaded from the website (Http://polymer.bu.edu//ogaf/html/software.htm) for free use.Google Scholar