Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-09T17:02:50.289Z Has data issue: false hasContentIssue false

Compositional Disorder Induced Relaxor Behavior of (PbLa)TiO3 Thin Films

Published online by Cambridge University Press:  17 March 2011

S. Bhaskar
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras campus, San Juan, PR 00931
S. B. Majumder
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras campus, San Juan, PR 00931
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras campus, San Juan, PR 00931 Electronic mail: rkatiyar@rrpac.upr.clu.edu
Get access

Abstract

Temperature dependent dielectric behavior of sol-gel derived ferroelectric Pb1−xLaxTiO3 (PLT) (x = 0.05 to 0.30) thin films on Pt/Si substrates has been studied. The characteristics of the diffuse phase transition and possible relaxor behavior of PbTiO3 thin films doped with different amounts of La are investigated. Room temperature X-ray and micro Raman results indicate that the crystal structure of the PLT films was strongly influenced by the La content. The softening of the E(1TO) mode with increasing La content indicates that the incorporation of La in the PT lattice results in a structural disorder in the material. The dielectric permittivity and loss tangent of the PLT thin films were measured in the temperature range of 80 –700 K at frequencies between 1 kHz and 1 MHz. Transition temperatures (Tm) for PLT (x = 0.05, 0.20, and 0.30) are 640, 460, and 254 K respectively, and are higher in comparison to reported values of bulk ceramics. The permittivity maximum broadened, and showed relaxor- type frequency dependent permittivity characteristics for PLT (x = 0.30) films. The broadening parameter was significantly influenced by La doping and our results indicate that PLT thin films undergo a normal-to-relaxor ferroelectric transformation for La concentrations of 25 at% in PLT films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Auciello, O., Scott, J. F., and Ramesh, R., Physics Today 51, 22 (1998).Google Scholar
[2] Scott, J. F., Ferroelectrics Review 1, 1 (1998).Google Scholar
[3] Majumder, S. B., Dobal, P. S., Bhaskar, S., and Katiyar, R. S., Ferroelectrics 241, 287 (2000).Google Scholar
[4] Majumder, S. B., Jain, M., Martinez, A., Katiyar, R. S., Kuels, F. W. Van and Miranda, F. A., J. Appl. Phys. 90, 896 (2001).Google Scholar
[5] Haertling, G. H., J. Am. Ceram. Soc., 82, 797 (1999).Google Scholar
[6] Smolenski, G. A. and Agranovskaya, A. J., Sov. Phys. Tech. Phys. 3, 1380 (1959).Google Scholar
[7] Cross, L. E., Ferroelectrics 151, 305 (1994).Google Scholar
[8] Adachi, H., Mitsuyu, T., Yamazaki, O. and Wasa, K., J. Appl. Phys. 60, 736–41 (1986).Google Scholar
[9] Rao, G. M. and Krupanidhi, S. B., Appl. Phys. Lett. 64 (12), 1591–93 (1994).Google Scholar
[10] Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., Ferroelectrics 118, 325–42 (1991).Google Scholar
[11] Kang, S. J., Chang, D. H., and Yoon, Y. S., Thin Solid Films 373, 5359 (2000).Google Scholar
[12] Francis, L. F., Oh, Y. J., and Payne, D. A., J. Mater. Sci. 25, 5007 (1990).Google Scholar
[13] Udaykumar, K. R., Chen, J., Schuele, P. J., Cross, L. E., Kumar, V., and Krupanidhi, S. B., Appl. Phys. Lett. 60, 1187 (1992).Google Scholar
[14] Lin, C. H., Lee, S. W., Chen, H. and Wu, T. B., Appl. Phys. Lett., 75, 2485 (1995).Google Scholar
[15] Majumder, S. B., Bhaskar, S., Dobal, P. S. and Katiyar, R. S., Integ. Ferroelectrics 23, 127 (1999).Google Scholar
[16] Foster, C. M., Li, Z., Grimsditch, M., Chan, S. K. and Lam, D. J., Phys. Rev. B48, 10160 (1993).Google Scholar
[17] Dobal, P. S., Majumder, S. B., Bhaskar, S., and Katiyar, R. S., Raman, J.. Spectrosc. 30, 567 (1999).Google Scholar
[18] Kim, T.-Y and Jang, H. M., Appl. Phys. Lett. 77, 3824 (2000).Google Scholar
[19] Qu, B., Zhang, W., and Zhang, P. L., Phys. Rev. B52, 766 (1994).Google Scholar
[20] Tyunina, M. and Levoska, J., Phy. Rev. B63, 224102 (2001).Google Scholar
[21] Glinchuk, M. D. and Farhi, R., J. Phys.: Condens. Matter 8, 6985 (1996).Google Scholar
[22] Viehland, D., Dai, X. H., Li, J. F., and Xu, Z., J. Appl. Phys. 84, 458 (1998).Google Scholar
[23] Levanyuk, A. P., Minyukov, S. A., and Vallade, M., J. Phys.: Condens. Matter 9, 5313 (1997).Google Scholar
[24] Tyunina, M., Levoska, J., Sternberg, A., and Leppavuori, S., J. Appl. Phys. 84, 6800 (1998).Google Scholar
[25] Bhaskar, S., Majumder, S.B., Jain, M., Dobal, P. S., and Katiyar, R. S., Mat. Sci. and Engg. B87, 178 (2001).Google Scholar
[26] Lee, S. S. and Kim, H. G., Integ. Ferroelectrics, 12, 83 (1996).Google Scholar
[27] Glazounov, A. E., Tagantsev, A. K., and Bell, A. J., Phys. Rev. B 53, 11281 (1996).Google Scholar
[28] Kirillov, V. V. and Isupov, V. A., Ferroelectrics 5, 3 (1973).Google Scholar
[29] Smolensky, G. A., J. Phys. Soc. Jpn. 28, 26 (1970).Google Scholar