Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:18:26.141Z Has data issue: false hasContentIssue false

Control of Materials and Interfaces in μc-Si:H-based Solar Cells Grown at High Rate

Published online by Cambridge University Press:  10 August 2011

Yasushi Sobajima
Affiliation:
Department of Systems Innovations, Graduate School of Engineering Science Osaka University, Toyonaka, Osaka, 560-8531, Japan The Japan Science and Technology Agency (JST) - Core Research for Evolutional Science and Technology (CREST)
Chitose Sada
Affiliation:
Department of Systems Innovations, Graduate School of Engineering Science Osaka University, Toyonaka, Osaka, 560-8531, Japan The Japan Science and Technology Agency (JST) - Core Research for Evolutional Science and Technology (CREST)
Akihisa Matsuda
Affiliation:
Department of Systems Innovations, Graduate School of Engineering Science Osaka University, Toyonaka, Osaka, 560-8531, Japan The Japan Science and Technology Agency (JST) - Core Research for Evolutional Science and Technology (CREST)
Hiroaki Okamoto
Affiliation:
Department of Systems Innovations, Graduate School of Engineering Science Osaka University, Toyonaka, Osaka, 560-8531, Japan The Japan Science and Technology Agency (JST) - Core Research for Evolutional Science and Technology (CREST)
Get access

Abstract

Growth process of microcrystalline silicon (μc-Si:H) using plasma-enhanced chemicalvapor- deposition method under high-rate-growth condition has been studied for the control of optoelectronic properties in the resulting materials. We have found two important things for the spatial-defect distribution in the resulting μc-Si:H through a precise dangling-bond-density measurement, e. g., (1) dangling-bond defects are uniformly distributed in the bulk region of μc- Si:H films independent of their crystallite size and (2) large number of dangling bonds are located at the surface of μc-Si:H especially when the film is deposited at high growth rate. Starting procedure of film growth has been investigated as an important process to control the dangling-bond-defect density in the bulk region of resulting μc-Si:H through the change in the electron temperature by the presence of particulates produced at the starting period of the plasma. Deposition of Si-compress thin layer on μc-Si:H grown at high rate followed by thermal annealing has been proposed as an effective method to reduce the defect density at the surface of resulting μc-Si:H. Utilizing the starting-procedure-controlling method and the compress-layerdeposition method together with several interface-controlling methods, we have demonstrated the fabrication of high conversion-efficiency (9.27%) substrate-type (n-i-p) μc-Si:H solar cells whose intrinsic μc-Si:H layer is deposited at high growth rate of 2.3 nm/sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vallat-Sauvain, E., Shah, A., Bailat, J., Thin Film Solar Cells, Fabrication, Characterization and Applications (Wiley, Chichester, 2006) Chap. 4, pp. 133172, and reference therein.10.1002/0470091282.ch4Google Scholar
2. Matsuda, A., J. Non-Cryst. Solids 338-340, 1 (2004).10.1016/j.jnoncrysol.2004.02.012Google Scholar
3. Matsui, T., Kondo, M., Matsuda, A., Jpn. J. Appl. Phys. 42, L901 (2003).10.1143/JJAP.42.L901Google Scholar
4. Sobajima, Y., Nishino, M., Fukumori, T., Higuchi, T., Nakano, S., Toyama, T., Okamoto, H., Sol. Energy Mater. Sol. Cells 93, 980 (2009).10.1016/j.solmat.2008.11.042Google Scholar
5. Fukawa, M., Suzuki, S., Guo, L. H., Kondo, M., Matsuda, A., Sol. Energy Mater. Sol. Cells 66, (2001) 217.10.1016/S0927-0248(00)00176-8Google Scholar
6. Sobajima, Y., Higuchi, T., Chantana, J., Toyama, T., Sada, C., Matsuda, A., Okamoto, H., Phys. Status Solidi C 7, 521 (2010).Google Scholar
7. Niikura, C., Kondo, M., Matsuda, A., J. Non-Cryst. Solids 338340, 42 (2004).10.1016/j.jnoncrysol.2004.02.018Google Scholar
8. Perrin, J., Leroy, O., Bordage, M. C., Contrib. Plasma Phys., 36, 3 (1996).10.1002/ctpp.2150360102Google Scholar
9. Niikura, C., Itagaki, N., Kondo, M., Kawai, Y., Matsuda, A., Thin Solid Films 457, 84 (2004).10.1016/j.tsf.2003.12.041Google Scholar
10. Tsuda, M., Oikawa, S., Sato, K., J. Chem. Phys. 91, 6822 (1989).10.1063/1.457657Google Scholar
11. Iqbal, Z., Veprek, S.: J. Phys. C 15, 377(1982).10.1088/0022-3719/15/2/019Google Scholar
12. Griffith, R. W., Kampas, F. J., Vanier, P. E., Hirsch, M. D., J. Non-Cryst. Solids 3536, 391 (1980).10.1016/0022-3093(80)90626-2Google Scholar
13. Matsuda, A., Tanaka, K., Thin Solid Films 92, 171(1982).10.1016/0040-6090(82)90200-0Google Scholar
14. Takai, M., Nishimoto, T., Kondo, M., Matsuda, A., Appl. Phys. Lett. 77, 2828(2000).10.1063/1.1322373Google Scholar
15. Takai, M., Nishimoto, T., Kondo, M., Matsuda, A., Thin Solid Films 390, 83 (2001).10.1016/S0040-6090(01)00942-7Google Scholar
16. Perrin, J., Aarts, J. F. M., Chem. Phys. 80, 351(1983).10.1016/0301-0104(83)85289-6Google Scholar
17. Oikawa, S., Tsuda, M., Yoshida, J., Jisai, Y., J. Chem. Phys. 85, 2808 (1986).10.1063/1.451038Google Scholar
18. Matsuda, A., Takai, M., Nishimoto, T., Kondo, M., Sol. Energy Mater. Sol. Cells 78, 3 (2003).10.1016/S0927-0248(02)00431-2Google Scholar
19. Iwata, M., Tanaka, M., Sobajima, Y., Toyama, T., Sada, C., Matsuda, A., Okamato, H., Proceedings of 25th European photovoltaic Solar Energy Conference and Exhibition, 3AV.1.30, p2967.Google Scholar
20. Toyama, T., Kitagawa, T., Sobajima, Y., Okamoto, H., Jpn. J. Appl. Phys. 46, 5125 (2007).10.1143/JJAP.46.5125Google Scholar
21. Matsuda, A., J. Vac. Sci. Technol. A 16, 365 (1998).10.1116/1.581105Google Scholar
22. Kawai, Y., Ikegami, H., Sato, N., Matsuda, A., Uchino, K., Kuzuka, M., Mizuno, A., Industrial Plasma Technology (Wiley-VCH, Weinhein, 2010) Chap. 18, p. 221.10.1002/9783527629749Google Scholar
23. Green, M. A., Sol. Energy 74, 181 (2003).10.1016/S0038-092X(03)00187-7Google Scholar
24. Leguijt, C., Lolgen, P., Eikelboom, J. A., Weeber, A. W., Schuurmans, F. M., Sinke, W. C., Verhoef, P. F. A., Sol. Energy Mater. Sol. Cells 40, 297 (1996).Google Scholar
25. Lim, K. S., Konagai, M., Takahashi, K., J. Appl. Phys. 56, 538 (1984).10.1063/1.333943Google Scholar
26. Matsui, T., Matsuda, A., Kondo, M., Sol. Energy Mater. Sol. Cells 90, 3199 (2006).Google Scholar