Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T11:42:23.775Z Has data issue: false hasContentIssue false

Deep-Level Characterization of Free-Standing HVPE-grown GaN Substrates Using Transparent Conductive Polyaniline Schottky Contacts

Published online by Cambridge University Press:  08 April 2011

Yoshitaka Nakano
Affiliation:
Chubu University, Kasugai, Aichi 487-8501, Japan
Nobuyuki Matsuki
Affiliation:
National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Mickael Lozac’h
Affiliation:
University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
Kazuaki Sakoda
Affiliation:
National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Masatomo Sumiya
Affiliation:
National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

We have investigated electronic deep levels in free-standing n-GaN substrates grown by hydride vapor phase epitaxy (HVPE), by means of a steady-state photo-capacitance spectroscopy technique, using transparent conductive polyaniline Schottky contacts. Two specific deep levels located at ~1.7 and ~3.1 eV below the conduction band were revealed to be significantly reduced compared to those in n-GaN layers grown by metal-organic chemical vapor deposition. This difference between them is probably due to extremely low concentrations of threading dislocations and residual C impurities in the HVPE-grown n-GaN substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuki, N., Irokawa, Y., Matsui, T., Masuda, A., Kondo, M., and Sumiya, M., Appl. Phys.Express 2, 092201 (2009).Google Scholar
2. Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C.-W., and Lee, S.-H., Nature 441, 65 (2006).Google Scholar
3. Nakano, Y., Matsuki, N., Irokawa, Y., and Sumiya, M., Jpn. J. Appl. Phys. /in press/Google Scholar
4. Nakano, Y., Irokawa, Y., and Takeguchi, M., Appl. Phys. Express 1, 091101 (2008).10.1143/APEX.1.091101Google Scholar
5. Nakano, Y., Irokawa, Y., Sumida, Y., Yagi, S., and Kawai, H., Phys. Status Solidi RRL 4, 374 (2010).Google Scholar
6. Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).10.1063/1.1643540Google Scholar
7. Armstrong, A., Li, Q., Bogart, K. H. A., Lin, Y., Wang, G. T., and Talin, A. A., J. Appl. Phys. 106, 053712 (2009).Google Scholar
8. Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H., and Akasaki, I., Phys. Rev. B 52,16702 (1995).Google Scholar
9. Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R., and Melngailis, I., Mater. Res. Soc. Symp.Proc. 378, 479 (1995).Google Scholar
10. Zhang, R. and Kuech, T. F., Appl. Phys. Lett. 72, 1611 (1998).Google Scholar