No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Underdamped dislocation motion through local pinning obstacles is studied computationally using a stochastic dislocation dynamics scheme. The global dislocation velocity is observed to be non-linearly stress dependent. Strongly non-Arrhenius dynamics are found at a higher stress range. The statistical analysis indicates that the correlation of the local dislocation kinetic energy is extended and exceeds the average obstacle spacing as temperature decreases, which can lead to the inertial dislocation bypass of the obstacles.