Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T18:03:19.127Z Has data issue: false hasContentIssue false

Electronic Structure Under Extreme Uniaxial Strains: Conductance in Metallic Nanocontacts.

Published online by Cambridge University Press:  10 February 2011

Daniel Sánchez-Portal
Affiliation:
Departamento de Física de la Materia Condensada and Instituto “Nicolas Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Carlos Untiedt
Affiliation:
Departamento de Física de la Materia Condensada and Instituto “Nicolas Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
José M. Soler
Affiliation:
Departamento de Física de la Materia Condensada and Instituto “Nicolas Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Juan J. Sáenz
Affiliation:
Departamento de Física de la Materia Condensada and Instituto “Nicolas Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Nicolas Agraït
Affiliation:
Departamento de Física de la Materia Condensada and Instituto “Nicolas Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Get access

Abstract

In this work we address the behaviour of electronic structure under uniaxial stress, by first-principles calculations and experiments of conductance in nanometer-sized metallic contactes of Au and Al. These contacts are shown to be specially suitable for this purpose. The conductance behaviour is related to the change with strain of Fermi surface. Both experimental and theoretically Au behaves like the free electron gas but Al has the opposite behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agraït, N. et al, Phys. Rev. B 47, 12345 (1993);Google Scholar
Pascual, J.I. et al, Phys. Rev. Lett. 71, 1852 (1993);Google Scholar
Olesen, L. et al, Phys. Rev. Lett. 72, 2251 (1994).Google Scholar
2. Agraït, N. et al, Phys. Rev. B 48, 8499 (1993);Google Scholar
Untiedt, C. et al, Phys. Rev. B 56, 2154 (1997).Google Scholar
3. Muller, C.J., van Ruitenbeek, J.M. and de Jongh, L.J., Phys. Rev. Lett. 69, 140 (1992);Google Scholar
Krans, J.M. et al, Nature 375, 6534 (1995);Google Scholar
Scheer, E. et al., Phys. Rev. Lett. 78, 3535 (1997).Google Scholar
4. Todorov, T.N. and Sutton, A.P., Phys. Rev. Lett. 70, 2138 (1993).Google Scholar
Lynden-Bell, R.M., Science 263, 1704 (1994);Google Scholar
Landman, U. et al, Phys. Rev. Lett. 77, 1362 (1996).Google Scholar
5. Torres, J. A. and Sáenz, J. J., Phys. Rev. Lett. 77, 2245 (1996).Google Scholar
6. Agraït, N., Rubio, G., Vieira, S., Phys. Rev. Lett. 74, 3995 (1995);Google Scholar
Rubio, G., Agraït, N., Vieira, S., Phys. Rev. Lett. 76, 2302 (1996).Google Scholar
7. Recently, calculations on jellium modelled nanowires have shown than similar forces could be obtained from purely electronic effects, Stafford, C.A. et al. Phys. Rev. Lett. 79, 2863 (1997);Google Scholar
Yannouleas, C. and Landman, U. J. Phys. Chem. A 101, 4780 (1997).Google Scholar
8. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J., Science 248, 454 (1990).Google Scholar
9. Sánchez-Portal, D., Untiedt, C., Soler, J. M., Saenz, J. J. and Agraït, N., Phys. Rev. Lett. 79, 4198 (1997).Google Scholar
10. Krans, J. M., et al., Phys. Rev. B 48, 14721 (1993).Google Scholar
11. Sharvin, Yu. V., Zh. Eksp. Teor. Fiz. 48, 984 (1965) [Sov. Phys. JEPT 21, 655 (1965)];Google Scholar
Torres, J.A. et al., Phys. Rev. B 49, 16581 (1994);Google Scholar
García-Martín, A. et al., Phys. Rev. B 54, 13448 (1996).Google Scholar
12. In the self-consistent calculations a planewave cut-off of 10 Ry for Al and 30 Ry for Au. We used 1000 points in the whole Brillouin zone (BZ).Google Scholar
13. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991);Google Scholar
Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
14. Perdew, J. and Zunger, A., Phys. Rev. B 23, 5075 (1981).Google Scholar
15. The variation of G with strain turns out be isotropie for Au. The ballistic conductance exhibits a dependence in crystalline direction for both Au and Al. For Au, in the undeformed cell, have a maximum in the (110) direction and a pronounced minimum in the (111): G 100/G 110 = 0.966, G 111/G 110 = 0.933. For Al we find the maximum of conductance near the (100) direction: G 110/G 100 = 0.953, G 111/G 100 = 0.962.Google Scholar
16. Kondo, Y. et al, Phys. Rev. Lett. 79, 3455 (1997).Google Scholar