No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Several iron phosphates were synthesized by solution-based techniques and tested as cathodes in non aqueous lithium cells. The addition of phosphate ions to a solution of iron (II) produced crystalline Fe3(PO4)2. This material is easily oxidized by air to form an amorphous phase that is able to reversibly intercalate lithium. The amorphous compound was identified to be a mixture of FePO4 and Fe2O3. A new synthetic route was developed to prepare pure amorphous FePO4. Amorphous LiFePO4 was obtained by chemical lithiation of FePO4. The material was heated at 500°C under reducing atmosphere to obtain nano-crystalline LiFePO4. This latter material showed excellent electrochemical performance when used as cathode of lithium cells.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.