Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:40:10.042Z Has data issue: false hasContentIssue false

First-Principles Studies of the Magnetic Properties of hcp Cr in Cr/Cu(111) and Cr/Ru(0001) Superlattices

Published online by Cambridge University Press:  01 February 2011

G. Y. Guo*
Affiliation:
Department of Physics, National Taiwan University, Taipei 106, Taiwan
Get access

Abstract

Latest first-principles density functional theoretical calculations using the generalized gradient approximation and highly accurate all-eleectron full-potential linearized augmented plane wave method, show that bulk hcp Cr would be a paramagnet and that no ferromagnetic state could be stabilized over a wide range of volume [1]. To understand the recent observation of the weakly ferromagnetic state of Cr in hcp Cr/Ru (0001) superlattices [2], the same theoretical calculations have been carried out for the hcp Cr3/Ru7 (0001) and hcp Cr3/fcc Cu6 (111) superlattices. The Cr/Ru superlattice is found to be ferromagnetic with a small magnetic moment of ∼0.31μB/Cr while in contrast, Cr/Cu superlattice is found to be nonmagnetic.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Guo, G.Y. and Wang, H.H., Phys. Rev. B62, 5136 (2000).Google Scholar
[2] Albrecht, M., Maret, M., Koehler, J., Gilles, B., Poinsot, R., Hazemann, J. L., Tonnerre, J. M., Teodorescu, C., and Bucher, E., Phys. Rev. Lett. 85, 5344 (2000).Google Scholar
[3] Vavra, W., Barlett, D., Elagoz, S., Uher, C. and Clarke, R., Phys. Rev. B47, 5500 (1993).Google Scholar
[4] Kohlhepp, J., Fritzsche, H., Elmers, H.-J. and Gradmann, U., J. Magn. Magn. Mater. 148, 95 (1995).Google Scholar
[5] Liou, Y. H., Pong, W.F., Tsai, M.-H., Chang, K.H., Hseih, H.H., Chang, Y.K., Chien, F.Z., Tseng, P.K., Lee, J.F., Liou, Y. and Huang, J.C.A., Phys. Rev. B 62, 9616 (2000).Google Scholar
[6] Xu, J.-H., Freeman, A.J. and Jarlorg, T., Phys. Rev. B29, 1250 (1984).Google Scholar
[7] Paxton, A.T., Methfessel, M. and Polatoglou, H.M., Phys. Rev. B41, 8127 (1990).Google Scholar
[8] Liu, A.Y. and Singh, D.J., Phys. Rev. B47, 8515 (1993).Google Scholar
[9] Blaha, P., Schwarz, K., and Luitz, J., WIEN97, Vienna. Univ. of Technology 1997. (Improved and updated Unix version of the original copy righted WIEN-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, in Comput. Phys. Commun. 59, 399 1990).Google Scholar
[10] Perdew, J.P., Burke, S. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
[11] Bloom, D.S., Putnam, J.W. and Grant, N.J., J. Met. 4, 626 (1952).Google Scholar
[12] Papaconstantopoulos, D.A., Fry, J.L. and Brener, N.E., Phys. Rev. B39, 2526 (1989).Google Scholar
[13] Podgorny, M. and Goniakowski, J., Phys. Rev. B42, 6683 (1990).Google Scholar
[14] Bloechl, P.E., Jepsen, O. and Andersen, O.K., Phys. Rev. B49, 16223 (1994).Google Scholar
[15] Sander, D., Rep. Prog. Phys. 62, 809 (1999).Google Scholar