Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T18:03:05.719Z Has data issue: false hasContentIssue false

High-Throughput Adhesion Evaluation and Scale-up of Combinatorial Leads of Organic Protective Coatings

Published online by Cambridge University Press:  01 February 2011

Karin Ezbiansky
Affiliation:
General Electric Company, GE Silicones, Waterford, New York 12188
George Medford
Affiliation:
General Electric Company, GE Silicones, Waterford, New York 12188
Hariklia Reitz
Affiliation:
General Electric Company, GE Silicones, Waterford, New York 12188
Radislav A. Potyrailo
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
Bret J. Chisholm
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
William G. Morris
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
James N. Cawse
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
William P. Flanagan
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
Lamyaa Hassib
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
Chris A. Molaison
Affiliation:
General Electric Company, Global Research Center, Schenectady, New York 12301
Get access

Abstract

Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. This approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 × 6 arrays of coating elements that are discretely deposited on a single 9 × 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss. This parameter is one primary consideration in end-use automotive applications. Coating leads identified from the HT screening have been validated on the traditional scale. Details of these validation studies are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Chisholm, B. J.; Potyrailo, R. A.; Cawse, J. N.; Shaffer, R. E.; Brennan, M. J.; Moison, C.; Whisenhunt, D. W.; Flanagan, W. P.; Olson, D. R.; Akhave, J. R.; Saunders, D. L.; Mehrabi, A.; Licon, M., The development of combinatorial chemistry methods for coating development I. Overview of the experimental factory, Prog. Org. Coat. 2002, 45, 313321.Google Scholar
(2) Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings, Proc. SPIE-Int. Soc. Opt. Eng., 4578 (Fiber Optic Sensor Technology and Applications 2001) 145152 (2002).Google Scholar
(3) Pilcher, G. R., Meeting the challenge of radical change: coatings R&D as we enter the 21st century, J. Coat. Technol. 2001, 73, 135143.Google Scholar
(4) Wicks, D. A.; Bach, H., The coming revolution for coatings science: high throughput screening for formulations, Proceedings of The 29th Int. Waterborne, High-Solids, and Powder Coat. Symp. 2002, 29, 124.Google Scholar
(5) Chisholm, B. J.; Potyrailo, R. A.; Cawse, J. N.; Brennan, M. J.; Molaison, C. A.; Shaffer, R. E.; Whisenhunt, D. W.; Olson, D. R., Combinatorial chemistry methods for coating development III. An illustration of an experiment conducted with the combinatorial factory, In Proc. 29th International Waterborne, High-Solids, and Powder Coatings Symposium; Storey, R. F. and Thames, S. F., Ed.; New Orleans, LA, USA, February 6–8, 2002, 2002; 125137.Google Scholar
(6) Chisholm, B. J.; Potyrailo, R. A.; Shaffer, R. E.; Cawse, J. N.; Brennan, M. J.; Molaison, C. A., Combinatorial chemistry methods for coating development IV: Correlation of high-throughput screening methods with conventional measurement techniques, In Proc. 2002 Athens Conference On Coatings Science and Technology July 1–5, Athens, Greece, 2002; 2333.Google Scholar
(7) Chisholm, B. J.; Potyrailo, R. A.; Shaffer, R. E.; Cawse, J. N.; Brennan, M. J.; Molaison, C. A., Combinatorial chemistry methods for coating development V: The influence of the abrasion mechanism on the development of a high throughput screening method for abrasion resistance, In Proc. International Coatings for Plastics Symposium Troy, MI, May 20–22, 2002; Paper Tue/2.Google Scholar
(8) Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 51055111.Google Scholar
(9) Potyrailo, R. A.; Olson, D. R.; Medford, G. F.; Brennan, M. J., Development of combinatorial chemistry methods for coatings: high-throughput optimization of curing parameters of coatings libraries, Anal. Chem. 2002, 74, 56765680.Google Scholar
(10) Potyrailo, R. A.; Morris, W. G.; Chisholm, B. J.; Cawse, J. N.; Brennan, M. J.; Molaison, C. A.; Hassib, L.; Flanagan, W. P.; Reitz, H.; Medford, G. F. High throughput screening of adhesion of combinatorial libraries of organic coatings, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 17–22, New Orleans, Louisiana, 2002; Paper 751.Google Scholar
(11) Chisholm, B. J.; Potyrailo, R. A.; Shaffer, R. E.; Cawse, J. N.; Brennan, M. J.; Molaison, C. A., Combinatorial chemistry methods for coating development III. Development of a high throughput screening method for abrasion resistance: correlation with conventional methods and the effects of abrasion mechanism, Prog. Org. Coat. 2003, 47, 112119.Google Scholar
(12) Chisholm, B. J.; Potyrailo, R. A.; Cawse, J. N.; Shaffer, R. E.; Brennan, M. J.; Molaison, C. A., Combinatorial chemistry methods for coating development V. The importance of understanding process capability, Prog. Org. Coat. 2003, 47, 120127.Google Scholar
(13) Cawse, J. N.; Olson, D.; Chisholm, B. J.; Brennan, M.; Sun, T.; Flanagan, W.; Akhave, J.; Mehrabi, A.; Saunders, D., Combinatorial chemistry methods for coating development V: generating a combinatorial array of uniform coatings samples, Prog. Org. Coat. 2003, 47, 128135.Google Scholar
(14) Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: high-throughput adhesion evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2003, 5, 472478.Google Scholar
(15) Saunders, D. L.; Akhave, J. R.; Potyrailo, R. A.; Olson, D. R.; Flanagan, W. P. An improved combinatorial testing method and apparatus for coat material formulations and methods; World Patent Application WO0132320: 2001.Google Scholar
(16) ASTM D 3359–92a, Standard Test Methods for Measuring Adhesion by Tape Test; ASTM: 1992.Google Scholar
(17) Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.W.; Schultz, P. G., A combinatorial approach to materials discovery, Science 1995, 268, 17381740.Google Scholar