Published online by Cambridge University Press: 22 November 2012
The damage that the products of microorganism metabolism, in particular biogenic sulfuric acid, do to hardened concrete is known as concrete biodeterioration. These microorganisms, Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans and sulfate-reducing bacteria (SRB) are ubiquitous in the environment and they produce either hydrogen sulfide or sulfuric acid that can dissolve and disintegrate the concrete matrix. Their activity plays a very important function in the whole spectrum of degradation processes such as corrosion of reinforced metals and concrete.
In Canada and in the northern part of the United States, concrete structure failures from concrete biodeterioration are less common than in the southern part of the United States and in Mexico, nevertheless, it is a serious and expensive problem in hydraulic structures and sewage collection systems, which rapidly deteriorate. Also, leaking sewage systems result in the loss of groundwater resources particularly important in this arid region. Almost every city in the Mexican-American border region, who’s combined population is more than 15 million people, faces this problem. The U.S. cities have made some provision to face these concrete structure problems, but the Mexican cities have made less effort. Additives and admixtures are used to improve the properties of the concrete; nonetheless, we have exposed here the importance of the factual composition of the Portland cement and concrete to mitigate concrete biodeterioration in the hydraulic structures and sewage collection systems.