Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:03:08.598Z Has data issue: false hasContentIssue false

Influence of the Film Thickness on the Optical and Electrical Properties of ITO

Published online by Cambridge University Press:  31 January 2011

Man Kin Fung
Affiliation:
nofung@hku.hk, The University of Hong Kong, Physics, Hong Kong, Hong Kong
Kai-Yin Cheung
Affiliation:
cky.com@gmail.com, The University of Hong Kong, Physics, Hong Kong, Hong Kong
Ye Chuan Sun
Affiliation:
kevin21.sun@gmail.com, The University of Hong Kong, Physics, Hong Kong, Hong Kong
Aleksandra B. Djurišić
Affiliation:
dalek@hkusua.hku.hk, The University of Hong Kong, Physics, Hong Kong, Hong Kong
Wai-Kin Chan
Affiliation:
waichan@hku.hk, The University of Hong Kong, Chemistry, Hong Kong, Hong Kong
Get access

Abstract

Indium tin oxide (ITO) is widely used for opto-electronic products such as organic light-emitting diodes, organic photovoltaic devices and liquid crystal displays due to its high transparency and electrical conductivity. Since there is a trade-off between the conductivity and transparency of ITO, it is necessary to optimize performances of opto-electronic products by balancing the sheet resistance and transmittance. Both sheet resistance and transmittance are affected by a number of factors such as working temperature, working pressure, oxygen-to-argon ratio during the fabricating process, and thickness. In our study, ITO thin films were deposited on glass substrates by dc sputtering. Effects of ITO with different thicknesses, sheet resistances, and transmission spectra on the performance of bulk heterojunction photovoltaic devices were investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A. J., Adv. Funct. Mater. 15, 16171622 (2005).Google Scholar
2 Reyes-Reyes, M., Kim, K., and Carroll, D. L., Appl. Phys. Lett. 87, 083506 (2005).Google Scholar
3 Yoon, W.-J and Berger, P. R., Appl. Phys. Lett. 92, 013306 (2008).Google Scholar
4 Park, S. H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K., and Heeger, A. J., Nat. Photonics 3, 297303 (2009).Google Scholar
5 Wong, W.-Y., Wang, X.-Z., He, Z., Djurišiæ, A. B., Yip, C.-T, Cheung, K.-Y., Wang, H., Mak, C. S. K., and Chan, W.-K., Nat. Mater. 6, 521527 (2007).Google Scholar
6 Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., Mcculloch, I., Ha, C.–S., and Ree, M., Nat. Mater. 5, 197203 (2006).Google Scholar
7 Shankar, K., Mor, G. K., Paulose, M., Varghese, O. K., and Grimes, C. A., J. Non-Cryst. Solids 354, 27672771 (2008).Google Scholar
8 Djurišiæ, A. B., Kwong, C. Y., Chui, P. C., and Chan, W. K., J. Appl. Phys. 93, 54725479 (2003).Google Scholar
9 Chu, C.-W, Yang, H. C., Hou, W.-J., Huang, J. S., Li, G., and Yang, Y., Appl. Phys. Lett. 92, 103306 (2008).Google Scholar
10 Kim, H., Horwitz, J. S., Kushto, G., Piqué, A., Kafafi, Z. H., Gilmore, C. M., and Chrisey, D. B., J. Appl. Phys. 88, 60216025 (2000).Google Scholar
11 Kim, H., Gilmore, C. M., Piqué, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., J. Appl. Phys. 86, 64516461 (1999).Google Scholar
12 Kulkarni, A. K., Schulz, K. H., Lim, T. S., and Khan, M., Thin Solid Films 345, 273277 (1999).Google Scholar