Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:32:03.338Z Has data issue: false hasContentIssue false

Integration of fullerenes and carbon nanotubes with aggressively scaled CMOS gate stacks

Published online by Cambridge University Press:  01 February 2011

Udayan Ganguly
Affiliation:
Department of Materials Science and Engineering, Cornell University
Chungho Lee
Affiliation:
School of Electrical and Computer Engineering, Cornell University
Edwin C. Kan
Affiliation:
School of Electrical and Computer Engineering, Cornell University
Get access

Abstract

Here we report the first study towards the integration of fullerenes and carbon nanotubes (CNT) in the gate stack of CMOS technology, which is a promising hybrid approach of top-down and bottom-up fabrication process. Prospective processes for C60 and CNT deposition over an aggressively scaled 2 nm gate oxide in the MOS capacitor structure have been monitored. CV measurements show minimal silicon contamination and interface states. Step charging at a specific voltage that corresponds to a fixed number density of C60 is used to establish the structural integrity and size-mono-dispersion of C60. The CV method can be further used to probe the charge injection into C60 and its anions to establish fundamental understanding of their molecular orbital (MO) structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hisamoto, D., Lee, W-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Boko, J. and Hu, C., IEEE Trans. Electron Devices 47 (12) 2320 (2000)Google Scholar
[2] Liu, Z., Lee, C., Pei, G., Narayanan, V. and Kan, E. C., Mat. Res. Soc. Symp. Proc. 686, A5.3 (2001)Google Scholar
[3] Liu, Z., Lee, C., Narayanan, V., Pei, G. and Kan, E. C., IEEE Trans. Electron Devices 49 (9) 1606, (2002)Google Scholar
[4] Lee, C., Liu, Z. and Kan, E. C., Mat. Res. Soc. Symp. Proc. 737, F8.18 (2002)Google Scholar
[5] Shen, Y. N., Liu, Z., Minch, B. A., and Kan, E. C., IEEE Trans. Electron Devices 50 (10), 2171 (2003)Google Scholar
[6] Green, W. H. Jr, Fitzgerald, M. G. G., Fowler, P. W., Ceulemans, A. and Titeca, B. C., J. Phys. Chem. 100, 14892 (1996)Google Scholar
[7] Ruoff, R.S., Tse, D.S., Malhotra, R., Lorents., D.C., J. Phys. Chem. 97, 3379 (1993)Google Scholar
[8] Bahr, J. L., Mickelson, E. T., Bronikowski, M. J., Smalley, R. E., Tour, J M., Chemical Communications, p. 193, (2001)Google Scholar
[9] Franklin, N. R., Wang, Q., Tombler, T. W., Javey, A., Shim, M., and Dai, H., Appl. Phys. Lett. 81 (5), 913 (2002)Google Scholar
[10] Fuhrer, M., Park, H., and McEuen, P. L., IEEE Trans. on Nanotech. 1, 78 (2002).Google Scholar
[11] Schroeder, D.K., Semiconductor Material and Device Characterization, 3rd Ed. (John Wiley & Sons), p. 365 (1998)Google Scholar
[12] Park, H., Park, J., Lim, A. K.L., Anderson, E. H., Alivisatos, A. P., and McEuen, P. L., Nature 407, 57 (2000).Google Scholar
[13] Porath, D. and Millo, O., J. Appl. Phys. 81, (5), 2241 (1997)Google Scholar
[14] Greaney, M. A. and Gorun, S. M., J. Phys. Chem. 95, 7142 (1991)Google Scholar