Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T11:52:30.336Z Has data issue: false hasContentIssue false

The Integration of Low-k Dielectric Material Hydrogen Silsesquioxane (HSQ) with Nitride Thin Films as Barriers

Published online by Cambridge University Press:  17 March 2011

Linghui Chen
Affiliation:
Department of Chemical, Bio and Materials Engineering, NSF Center for Low Power Electronics, Arizona State University, Tempe, Arizona 85287-6006, USA
T. L. Alford
Affiliation:
Department of Chemical, Bio and Materials Engineering, NSF Center for Low Power Electronics, Arizona State University, Tempe, Arizona 85287-6006, USA
Get access

Abstract

HSQ (hydrogen silsesquioxane) is one of the promising low-k materials used in VLSI technology as an intra-metal dielectric to reduce capacitance-related issues. Like any other dielectrics, the integration of HSQ in multilevel interconnect schemes has been of considerable importance. In this study, the compatibility of HSQ with different nitride barrier layers, such as PVD and CVD TiN, PVD TaN, and CVD W2N, has been investigated by using a variety of techniques. The refractory metal barriers, Ti and Ta, are also included for a comparison. The degradation of HSQ films indicates a strong underlying barrier layer dependence. With CVD nitrides or refractory metals as barrier, HSQ exhibits a better structural and property stability than that with PVD nitrides. The possible mechanisms have been discussed to account for these observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. Ting, C.H. and Seidel, T.E., Mat. Res. Soc. Sym. Proc., 381, San Francisco, CA, April 17-19, 1995.Google Scholar
2. Jeng, S.-P., Taylor, K.J., Seha, T., Chang, M.-C., Fattaruso, J., Havemann, R.H., VLSI Tech. Symp., Kyoto, Japan, 1995.Google Scholar
3. Bremmer, J.N., Liu, Y., Gruszynski, K.G., Dall, F.C., Mat. Res. Soc. Sym. Proc., San Francisco, CA, April 1-4, 1997.Google Scholar
4. Tompkins, H.G. and Tray, C., J. Electrochem. Soc. 136, 2331 (1989).10.1149/1.2097334Google Scholar
5. Romero, J.D., Khan, M., Fatemi, H., and Turlo, J., J. Mater. Res. 6, 1996 (1991).10.1557/JMR.1991.1996Google Scholar
6. Wang, S.-Q., Raijmakers, I., Burrow, B.J., Suthar, S., Redkar, S., and Kim, K.-B., J. Appl. Phys. 70, 5176 (1990).12C.Y. Ting and M. Wittmer, Thin Solid Films, 96, 327 (1982).10.1063/1.347059Google Scholar
7. Gagnon, G., Currie, J.F., Brebner, J.L., and Darwall, T., J. Appl. Phys. 79, 7612 (1996).10.1063/1.362418Google Scholar
8. Pokela, P.J., Knok, C.-K., Kolawa, E., Raud, S., and Nicolet, M.-A., Appl. Surf. Sci. 53, 364 (1991).10.1016/0169-4332(91)90287-TGoogle Scholar
9. Zeng, Y., Russell, S. W., McKerrow, A. J., Chen, L.-H., Alford, T. L., J. Vac. Sci. Technol B 18 (2000) 221.10.1116/1.591176Google Scholar
10. Wipf, H., Hydrogen in Metals III, Springer, Berlin, 1997.10.1007/BFb0103398Google Scholar
11. Sanderson, R.T., Chemical Bonds and Bond Energy, Academic Press, New York, 1976.Google Scholar
12. Ray, S.K., Maiti, C.K., Lahiri, S.K., and Chakrabarti, N.B., J. Vac. Sci. Technol. B 10, 1139 (1992).10.1116/1.586090Google Scholar