Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T15:36:12.228Z Has data issue: false hasContentIssue false

Kinetics of Thermal Decomposition of Group-Hi Metal Alkyls on GaAs(100)

Published online by Cambridge University Press:  25 February 2011

V. M. Donnelly
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
J. A. Mccaulley
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
R. J. Shul
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
Get access

Abstract

We report studies of the kinetics of thermal decomposition of triethylgallium (TEGa), trimethylgallium (TMGa), and trimethylindium (TMIn) adsorbed on GaAs(100) in ultrahigh vacuum. The adsorbed layers were prepared by dosing GaAs(100) at room temperature, to either saturated coverage or coverages below saturation. Subsequent heating leads to loss of adsorbed hydrocarbons. The relative coverage of carbon was monitored by X-ray photoelectron spectroscopy (XPS), and products were detected with a differentially pumped quadrupole mass spectrometer. The kinetic analysis also includes measurements of laser-induced, rapid thermal decomposition (heating rates of ∼1011°C/s).

TEGa dissociatively chemisorbs on GaAs(100). Heating the substrate results in desorption of diethylgallium radicals at low temperature and C2H4 (and some C2H5) at higher temperatures, after most of the diethylgallium has desorbed. TMGa decomposes to yield a Ga-alkyl desorption product (either dimethylgallium, or a mixture of dimethylgallium and TMGa) at low temperature and CH3 at higher temperature. TMIn undergoes a methyl exchange reaction on GaAs(100) where a Ga-alkyl desorbs with the same cracking pattern as in TMGa decomposition. Decomposition mechanisms for these group-III metal alkyls are proposed, Arrhenius parameters are presented, and some implications are discussed for growth of Ga-containing III-V compound semiconductor films from these precursors by chemical vapor deposition and molecular beam techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mountziaris, T. J. and Jensen, K. F., in: Chemical Perspectives of Microelectronic Materials, Vol. 131, eds. Gross, M. E., Jasinski, J. M., and Yates, J. T. Jr., (Materials Research Society, Pittsburgh, PA 1987) pp. 117122.Google Scholar
2. Aspnes, D. E., Bhat, R., Colas, E., Keramidas, V. G., Koza, M. A., and Studna, A. A., J. Vac. Sci. Technol. A7, 711 (1989).Google Scholar
3. Tsang, W. T., Appl. Phys. Lett., 45, 1234 (1984).Google Scholar
4. Robertson, A. Jr., Chiu, T. H., Tsang, W. T., and Cunningham, J. E., J. Appl. Phys., 64, 877 (1988).Google Scholar
5. Donnelly, V. M. and McCaulley, J. A., Surf. Sci., 238, 34 (1990).Google Scholar
6. McCaulley, J. A., McCrary, V. R., and Donnelly, V. M., J. Phys. Chem., 93, 1014 (1989).Google Scholar
7. Donnelly, V. M. and McCaulley, J. A., Surf. Sci. Lett., 235, L333(1990).Google Scholar
8. McCaulley, J. A., and Donnelly, V. M., J. Chem. Phys. 91, 4330 (1989).Google Scholar
9. Donnelly, V. M., submitted to J. Vac. Sci. Technol., 1990.Google Scholar
10. McCaulley, J. A., Shul, R. J., and Donnelly, V. M., submitted to J. Vac. Sci. Technol., 1990.Google Scholar
11. Ozeki, M., Mochizuki, K., Ohtsuka, N., and Kodama, K., Appl. Phys. Lett., 53, 1509 (1988).Google Scholar
12. Nishizawa, J., Kurabayashi, T., Abe, H., and Nozoe, A., Surf. Sci., 185, 249 (1987).Google Scholar
13. Nishizawa, J., Shimawaki, H., Kurabayashi, T., Kimura, M., in Growth of Compound Semiconductors, SPIE Vol. 796, 175 (1987).Google Scholar
14. Squire, D. W., Dulcey, C. S., and Lin, M. C., Mat. Res. Soc. Symp. Proc., 01, 301 (1988).Google Scholar
15. Pemble, M. E., Francis, S. M., Buhaenko, D. S., and Goulding, P. A., to be published in Proc. NATO Workshop on Reactions of Organometallics with Surfaces (1988).Google Scholar
16. Yu, M. L., Memmert, U., and Kuech, T. F., Appl. Phys. Lett. 55, 1011 (1989).Google Scholar
17. Claverie, P., Ueyama, K., Maeda, S., Namba, H., and Kuroda, H., Appl. Phys. Lett., 54, 698 (1989).Google Scholar
18. Murrell, A. J., Wee, A. T. S., Fairbrother, D. H., Singh, N. K., Foord, J. S., Davies, G. J., and Andrews, D. A., J. Crystal Growth, 105, 199 (1990).Google Scholar
19. Martin, T. and Whitehouse, C. R., J. Crystal Growth, i105, 57 (1990).Google Scholar
20. Nishizawa, J. and Kurabayashi, T., J. Crystal Growth, 93, 98 (1988).Google Scholar
21. Kodama, K., Ozeki, M., Mochizuki, K., and Ohtsuka, N., Appl. Phys. Lett.,54, 656 (1989).Google Scholar
22. Denbaars, S. F., Dapkus, P. D., Beyler, C. A., Hariz, A., and Dzurko, K. M., J. Cryst. Growth, 93, 195 (1988).Google Scholar
23. Creighton, J. R., Lykke, K. R., Shamamian, V. A., and Kay, B. D., Appl. Phys. Lett. 57, 279 (1990).Google Scholar
24. Creighton, J. R., Surf. Sci. 234, 287 (1990).Google Scholar
25. Ohki, Y. and Hiratani, Y., Jpn. J. Appl. Phys. 29, L1036 (1990).Google Scholar
26. Lee, F., Backman, A. L., Lin, R., Gow, T. R., and Masel, R. I., Surf. Sci. 216, 173 (1989).Google Scholar
27. Cho, A. Y., J. Appl. Phys., 42, 2074 (1971); J. Appl. Phys., 47, 2841 (1976).Google Scholar
28. Monch, W., in: Molecular Beam Epitaxy and Heterostructure, eds. Chang, L. L. and Ploog, K., NATO ASI Series (Nijhoff, Dordrecht, 1985), p. 119.Google Scholar
29. Donnelly, V. M. and McCaulley, J. A., J. Vac. Sci. Technol., A8, 84 (1989).Google Scholar
30. Nishizawa, J., Abe, H., and Kurabayashi, T., J. Electrochem. Soc. 132, 1198 (1985).Google Scholar
31. Tischler, M. A. and Bedair, S. M., Appl. Phys. Lett. 48, 1681 (1986).Google Scholar
32. DenBaars, S. P., Beyler, C. A., Hariz, A., and Dapkus, P. A., Appl. Phys. Lett. 51, 1530 (1987).Google Scholar
33. Ohno, H., Ohtsuka, S., Ohuchi, A., Matsubara, Y., and Hasegawa, H., J. Crystal Growth, 93, 342 (1988).Google Scholar
34. Goodman, C. H. L., and Pessa, M. V., J. Appl. Phys 60, R65 (1986).Google Scholar
35. Nishizawa, J., Kurabayashi, T., Abe, H., and Sakurai, N., J. Electrochem. Soc. 134, 945 (1987).Google Scholar
36. Ozeki, M., Mochizuki, K., Ohtsuka, N., and Kodama, K., Appl. Phys. Lett. 53, 1509 (1988).Google Scholar
37. Ohno, H., Ohtsuka, S., Ishii, H., Matsubara, Y., and Hasegawa, H., Appl. Phys. Lett. 54, 2000 (1989).Google Scholar