No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
We are developing a laser engineering approach to fabricate and optimize various types of alkaline microbatteries. Microbattery cells are produced using a laser forward transfer process that is compatible with the materials required to make the anode, cathode, separator and current collectors. The use of an ultraviolet transfer laser (wavelength = 355 nm, 30 ns FWHM) enables other operations such as surface processing, trimming and micromachining of the transferred materials and substrate and is performed in situ. Such multi-capability for adding, removing and processing material is unique to this direct-write technique and provides the ability to laser pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cell by laser direct-write under ambient conditions. The microbattery cells exhibit 1.5–1.6 V open circuit potentials, as expected for the battery chemistry and show flat discharge behavior under constant current loads.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.