Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T14:17:51.381Z Has data issue: false hasContentIssue false

Laser-Thermal Impurity Pumping of Shallow Donors in Ultrapure Germanium

Published online by Cambridge University Press:  25 February 2011

T. Theiler
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, FRG
F. Keilmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, FRG
E. E. Haller
Affiliation:
University of California at Berkeley and Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

Extremely narrow far-infrared lines [1] of OH-donors in ultrapure germanium are used to probe the fundamental dynamic processes of impurities. We examine the 1s-2p transition as a function of laser intensity, using photothermal ionization spectroscopy (PTIS) modified by Zeeman tuning with frequency-fixed lasers. We observe a change of the resonance line shape in the intensity region near 10-4 W/cm2. This effect can be quantitatively understood in a rate equation model which shows that at the critical intensity the ground state becomes depleted and the dependence of the recombination on the degree of ionization becomes important. Therefore the critical intensity depends also on compensation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Navarre, H., Haller, E. E. and Keilmann, F., Phys. Rev. B 37,10822 (1988).Google Scholar
2 Navarre, H., Griffin, J. and Haller, E. E., J. Phys. C21, 1511 (1988).Google Scholar
3 Lax, M., Phys. Rev. 119, 1502 (1960).Google Scholar
4 Beleznay, F. and Pataki, G., phys. stat. sol. 13,499 (1966).Google Scholar
5 Westervelt, R. M. and Teitsworth, S. W., J. Appl. Phys. 57, 5457 (1985).Google Scholar
6 Zylberstejn, A., Phys. Rev. 127,744 (1962).Google Scholar
7 Burstein, E., Picus, G. and Sclar, N., Photoconductive Conference Atlantic City 1954, edited by Beckenridge, R.G., Russel, B. R. and Hahn, E. E. (John Wiley, New York 1954), p. 353.Google Scholar
8 Rotseart, E., Clauws, P., Vennik, J. and van Goethem, L., Physica 146B, 75 (1987).Google Scholar
9 Ascarelli, G. and Rodriguez, R., Phys. Rev. 127, 167 (1962).Google Scholar
10 Abakumov, V. N. and Yassievich, I. N., Sov. Phys. JETP 44,345 (1976).Google Scholar
11 Theiler, T., Keilmann, F. and Haller, E. E., Proceedings of the Third International Conference Linköping 1988. edited by Monemar, B. (Institute of Physics Conference Series Number 95, Bristol and Philadelphia, 1989), p. 179.Google Scholar