Published online by Cambridge University Press: 01 February 2011
The dielectric elastomer, a particularly attractive type of electroactive polymer, uses commercial polymers such as acrylic and silicone elastomers. The technology has been limited in application by perceived lifetime issues. By addressing several lifetime issues, lifetimes of more than one million cycles, and in some cases beyond ten million cycles, were achieved with a variety of transducer configurations (including operation in generator mode) under a variety of operating conditions (including high humidity). Dielectric elastomers can produce maximum actuation strains of more than 100% and specific energy density exceeding that of known electric-field induced technology. Performance testing for dielectric elastomer actuators has typically been for peak-performance or “over-driven” conditions with short operational lifetimes (typically 100s or 1000s of cycles), particularly under conditions such as high humidity. By minimizing electric field and mechanical strain concentration factors, long lifetimes (>1 million cycles) with acrylic transducers were achieved with actuation strains as great as 40% areal strain (and up to 100% areal strain in generator mode). Actuators in a dry environment had an almost 20x increase in lifetime over actuators at ambient humidity (about 50% RH) at the same driving field conditions. Long actuation lifetimes were also achieved in a 100% RH environment and when fully submerged in salt water at reduced operating strain and field. In 100% RH, lifetimes of several million cycles were achieved at 4% strain. In underwater operation, 6 out of 11 actuators survived for >10 million cycles with an electric field limited to 32 MV/m and approximately 2% strain. The demonstrated lifecycle improvements are applicable to a variety of uses of dielectric elastomers, including haptic interface devices, pumps (implantable and external), optical positioners, and “artificial muscles” to replace small damaged muscles. Continued improvements in materials, actuator design, and packaging, combined with management of operational conditions as described here, should support new practical application of this promising technology.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.