Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T06:10:17.939Z Has data issue: false hasContentIssue false

Low Temperature Thin-film Silicon Diodes for Consumer Electronics

Published online by Cambridge University Press:  01 February 2011

Qi Wang
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Scott Ward
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Anna Duda
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Jian Hua
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Paul Stradins
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Richard S. Crandall
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Howard M. Branz
Affiliation:
Electronic Materials and Devices Division, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401USA Email>: qi wang@nrel.gov
Frank Jeffrey
Affiliation:
Iowa Thin Film Technologies (ITFT), AMES, IA, 50010 USA
Hao Lou
Affiliation:
Hewlett-Packard Laboratory, 1501 Page Mill Rd., Palo Alto, CA 94304 USA
Craig Perlov
Affiliation:
Hewlett-Packard Laboratory, 1501 Page Mill Rd., Palo Alto, CA 94304 USA
Warren Jackson
Affiliation:
Hewlett-Packard Laboratory, 1501 Page Mill Rd., Palo Alto, CA 94304 USA
Ping Mei
Affiliation:
Hewlett-Packard Laboratory, 1501 Page Mill Rd., Palo Alto, CA 94304 USA
Carl Taussig
Affiliation:
Hewlett-Packard Laboratory, 1501 Page Mill Rd., Palo Alto, CA 94304 USA
Get access

Abstract

We have developed high current density thin-film silicon n-i-p diodes for low cost and low temperature two-dimensional diode-logic memory array applications. The diodes are fabricated at temperatures below 250°C on glass, stainless steel, and plastic substrates using hot-wire chemical vapor deposition (CVD). The 0.01-mm2 standalone diodes have a forward current-density (J) of near 10 kA/cm2 and a rectification ratio over 107 at ±2 V. The 25 μm2 array diodes have J > 104 A/cm2 and rectification of 105 at ±2V. On plastic substrates, we have also used plasma-enhanced CVD to deposit 10-μm diameter diodes with J ˜ 5 x 104 A/cm2. We found that the use of microcrystalline silicon (μc-Si) i- and nlayers results in higher current-density diodes than with amorphous silicon. Reducing the diode area increases the forward current density by lowering the voltage drop across the external series resistances. A prototype diode array memory based on 10-micron devices was successfully demonstrated by monolithically integrating diodes with a-Si:H switching elements. High current density diodes have potential applications in a variety of large area, thin-film electronic devices, in addition to a-Si:H-based memory. This could widen the application of thin-film silicon beyond its present industrial applications in thin-film transistors, solar cells, bolometers and photo-detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gibson, R.A., Spear, W.E., Comber, P.G. Le, and Snell, A.J., Journal of Non-Crystalline Solids, 35 & 36: p. 725, 1980.10.1016/0022-3093(80)90289-6Google Scholar
2 Szydlo, N., Chartier, E., Proust, N., Magarino, J., and Kaplan, D., Applied Physics Letters, 40 p.988, 1982.10.1063/1.92978Google Scholar
3 Harris, A.J., Walker, R.S., and Sneddon, R., Journal of Applied Physics, 51 p.4287, 1980.10.1063/1.328246Google Scholar
4 Deng, J., Pearce, J.M., Koval, R.J., Vlahos, V., Collins, R.W., and Wronski, C.R., Applied Physics Letters, 82: p. 3023, 2003.10.1063/1.1571985Google Scholar
5 Johnson, M., Al-Shamma, A., Bosch, D., Crowley, M., Farmwald, M., Fasoli, L., Iikabhar, A., Kleveland, B., Lee, T., Liu, T.-Y., Nguyen, Q., Scheuerlein, R., So, K., and Thorp, T., IEEE J. Solid-State Circuit, 38 (11): p. 1920, 2003.10.1109/JSSC.2003.818147Google Scholar
6 Moller, S., Perlov, C., Jackson, W., Taussig, C., and Forrest, S.R., Nature, 426: p. 166. 2003.10.1038/nature02070Google Scholar
7 Hu, J., Ward, S., and Wang, Q., Applied Physics Letters, 83: p. 3153. 2003.10.1063/1.1618950Google Scholar
8 Graaf, C. de, Woerlee, P.H., Hart, C.M., Lifka, H., Vreede, P.W.H. de, Janssen, P.J.M., Sluijs, F.J., and Paulzen, G.M., Int. Elect. Dev. Mtg., 7: p. 1. 1996.Google Scholar
9 Wang, Q., Ward, S., Duda, A., Hu, J., Stradins, P., Crandall, R.S., and Branz, H.M., Applied Physics Letters, 85: p. 2122, 2004.10.1063/1.1789580Google Scholar
10 Wang, Q., Tessler, L.R., Moutinho, H., To, B., Perkins, J., Han, D., Ginley, D., and Branz, H.M.. Mat. Res. Soc. Proc. 762: p. A9, 2003.Google Scholar
11 Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts. second edition ed. 1988: Claredon Press, Oxford.Google Scholar
12 Han, D., Yue, G., Lorentzen, J.D., Lin, J., Habuchi, H., and Wang, Q., J. of Appl. Phys., 87: p. 1882, 2000.10.1063/1.372108Google Scholar
13 Hajto, J., Owen, A. E., Snell, A. J., LeComber, P. G., and Rose, M.J., Amorphous and Crystalline Semiconductor Devices, in Amorphous and Crystalline Semiconductor Devices, Kanicki, J., Editor., Artech House. p. 641, 1992 Google Scholar
14 Stradins, P., Branz, H.M., Jackson, W.B., Crandall, R.S., Hu, J., and Wang, Q.. Mat. Res. Soc. Proc. 808: p. 465, 2004.10.1557/PROC-808-A10.10Google Scholar