Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T09:11:35.252Z Has data issue: false hasContentIssue false

Microstructural Defects in Mg-doped AlGaN Layers Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  11 February 2011

Hyung Koun Cho
Affiliation:
Department of Metallurgical Engineering, Dong-A University, Hadan-2-Dong 840, Saha-gu, Busan, 604–714, KOREA
Gye Mo Yang
Affiliation:
Department of Semiconductor Science & Technology and Semiconductor Physics Research Center, Chonbuk National University, Duckjin-Dong, Chunju 561–756, Korea
Get access

Abstract

We have investigated the formation of inversion domain boundaries in Al0.13Ga0.87N layers grown on sapphire substrates by metalorganic chemical vapor deposition using transmission electron microscopy. By increasing the Mg source flow rate, the reduction of dislocation density occurred up to the Mg source flow rate of 0.103 μmol/min. While the vertical type inversion domain boundaries (IDBs) were observed in the Al0.13Ga0.87N layers grown with the low Mg source flow rate, the IDBs in the Al0.13Ga0.87N layers grown with the high Mg source flow rate have horizontally multifaceted shapes. The change of polarity by the IDBs of horizontal type also resulted in the 180°rotation of pyramidal defects within the same AlGaN layer. Therefore, We found that the Mg source flow rate affects significantly the dislocation density, the type of IDBs, and the shape of pyramidal defects in AlGaN layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takeuchi, T., Detchprohm, T., Iwaya, M., Hayashi, N., Isomura, K., Kimura, K., Yamaguchi, M., Amano, H., Akasaki, I., Kaneko, Yw., Shioda, R., Watanabe, S., Hidaka, T., Yamaoka, Y., and Kaneko, Ys., Appl. Phys. Lett. 75, 2960 (1999).Google Scholar
2. Liliental-Weber, Z., Sohn, H., Newman, N., and Washburn, J., J. Vac. Sci. Technol. B13, 1578 (1995).Google Scholar
3. Pécz, B., Makkai, Zs., di Forte-Poisson, M. A., Huet, F., and Dunin-Borkowski, R. E., Appl. Phys. Lett. 78, 1529 (2001).Google Scholar
4. Romano, L. T., Northrup, J. E., Ptak, A. J., and Myers, T. H., Appl. Phys. Lett. 77, 2479 (2000).Google Scholar
5. Ramachandran, V., Feenstra, R. M., Sarney, W. L., Salamanca-Riba, L., Northrup, J. E., Romano, L. T., and Greve, D. W., Appl. Phys. Lett. 75, 808 (1999).Google Scholar
6. Shen, X. Q., Ide, T., Shimizu, M., and Okumura, H., J. Appl. Phys. 89, 5731 (2001).Google Scholar
7. Vennéguès, P., Benaissa, M., Beaumont, B., Feltin, E., De Mierry, P., Dalmasso, S., Leroux, M., and Gibart, P., Appl. Phys. Lett. 77, 880 (2000).Google Scholar
8. Hellman, E. S., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar