Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:14:34.852Z Has data issue: false hasContentIssue false

Modeling the dislocation-void interaction in a dislocation dynamics simulation

Published online by Cambridge University Press:  10 March 2011

Sylvain Queyreau
Affiliation:
Nuclear Engineering Dept., UC Berkeley, Berkeley, CA 94720, USA. Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551, USA.
Ghiath Monnet
Affiliation:
EDF-R&D, MMC Dept., Avenue des Renardieres, 77818 Moret-sur-Loing, France.
Brian D. Wirth
Affiliation:
Nuclear Engineering Dept., University of Tennessee, Knoxville, TE 37996, USA.
Jaime Marian
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551, USA.
Get access

Abstract

In this paper, we propose a model for dislocation-void interaction in Iron that is amenable to dislocation dynamics simulations. Voids are treated as shearable particles whose shear resistance and thermal activation parameters are obtained from atomistic calculations. The modeling is first validated by direct comparison with molecular dynamics calculations. A good agreement is found especially at 0K and high temperature. The interaction with a random distribution of voids is then investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Osetsky, Y. N. and Bacon, D. J., Model Simul. Mat. Sci. Eng. 11, 427 (2003).Google Scholar
2. Osetsky, Y. N., Bacon, D. J. and Mohles, V., Phil. Mag. 83, 3623 (2003).Google Scholar
3. Bacon, D. J., Osetsky, Y. N. and Rodney, D., in Dislocations in Solids Vol. 15, edited by Hirth, J. P. and Kubin, L. K. (North Holland, Amsterdam, 2009) ch. 88.Google Scholar
4. Wirth, B. D., Bulatov, V.V and de la Rubia, T. D., J. Eng. Mater. Tech. 124, 329 (2002).Google Scholar
5. Hafez Haghighat, S. M., Fikar, J. and Schäublin, R., J. Nucl. Mat. 382, 187 (2008).Google Scholar
6. Scattergood, R. O. and Bacon, D. J., Acta Metall. 30, 165 (1982).Google Scholar
7. Monnet, G., Osetsky, Y. and Bacon, D., Phil. Mag. 90, 1001 (2009).Google Scholar
8. Schaublin, R. and Chiu, Y. L., J. Nucl. Mat. 362, 152 (2007).Google Scholar
9. Domain, C. and Monnet, G., Phys. Rev. Lett. 95, 214106 (2005).Google Scholar
10. Chaussidon, J., Fivel, M. and Rodney, D., Acta Mater. 54, 3407 (2006).Google Scholar
11. Lemarchand, C., Devincre, B. and Kubin, L. P., J. Mech. Phys. Solids 49, 1969 (2001).Google Scholar
12. Queyreau, S., Monnet, G. and Devincre, B., Int. J. of Plast. 25, 361 (2009).Google Scholar
13. Monnet, G., Phil. Mag. 86, 5927 (2006).Google Scholar
14. Mohles, V., Mat. Sci. Eng. A365, 144 (2004).Google Scholar
15. Osetsky, Y. N. and Bacon, D. J., J. Nucl. Mater. 323, 268 (2003).Google Scholar
16. Urabe, N. and Weerman, J., Mat. Sci. Eng. 18, 41 (1975).Google Scholar
17. Bacon, D. J., Kocks, U. F. and Scattergood, R. O., Phil. Mag. 28, 1241 (1973).Google Scholar
18. Meslin-Chiffon, E., PhD Thesis, University of Rouen (2007).Google Scholar
19. Eldrup, M., Singh, B.N., Zinkle, S. J., Byun, T. S. and Farrell, K., J. Nucl. Mater. 307-311, 912 (2002).Google Scholar
20. Brown, L. and Ham, R. K., in Strengthening Methods in Solids, edited by Kelly, A. and Nicholson, R. B. (Applied Science Publishers, Barking, Essex, 1971) pp 9135.Google Scholar
21. Nembach, E., Particle strengthening of metals and alloys, 2nd ed. (Wiley, New York, 1996) ch. 2.Google Scholar
22. Queyreau, S., Monnet, G. and Devincre, B., Acta Mater. 58, 5586 (2010).Google Scholar