Published online by Cambridge University Press: 28 February 2011
A kinetic model for metalorganic vapor phase epitaxy (MOVPE) of GaAs from trimethylgallium and arsine is imbedded into two-dimensional transport phenomena descriptions of horizontal and vertical MOVPE reactors. The mechanism involves 15 gas-phase species, 17 gas-phase reactions, 9 surface species and 26 surface reactions. The surface reactions take into account different crystallographic orientations of the GaAs substrate. Carbon incorporation is predicted to occur via carbene containing species. A sensitivity analysis shows that only a few reactions are needed to simulate observed growth rates while the full mechanism is important in computing carbon levels in GaAs. The model predictions are in good agreement with data for trimethylgallium decomposition in hot isothermal tubes, with GaAs growth in horizontal reactors, and with carbon incorporation in vertical reactors. The transport-reaction model demonstrates that both gas-phase and surface reactions as well as transport phenomena are important in predicting MOVPE reactor performance.