Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T01:31:07.744Z Has data issue: false hasContentIssue false

Nanoengineering with DNA

Published online by Cambridge University Press:  15 February 2011

Nadrian C. Seeman*
Affiliation:
Department of Chemistry, New York University, New York, NY 10003USA
Get access

Abstract

DNA is a tractable medium for controlling the structure of matter on the nanometer scale. We have explored ligating together stable branched DNA molecules to form geometrical objects. By this means, we have assembled a 3-connected molecule whose helix axes have the connectivity of a cube. The construct is a hexacatenane, each of whose cyclic strands corresponds to a face of the object. Each of its twelve edges contains a unique recognition site for cleavage by a restriction enzyme; these sites are used to demonstrate the assembly of the object. The plectonemic structure of DNA also permits the directed synthesis of molecular knots. Recently, we have constructed trefoil knots from B-DNA and an amphichiral figure-8 knot whose helical domains contain both B-DNA and Z-DNA.

We have developed a solid-support methodology for the synthesis of geometrical objects. This approach provides greater control over products and topological purity, and lends itself better to automation. Branched molecules containing 3–6 double helical arms can be formed from equimolar mixtures of their component strands, thereby enabling the construction of 3–6 connected networks. The goals of this work include the construction of periodic multiply-connected networks of DNA. The aims of these DNA constructions include using them as scaffolding to build periodic macromolecular arrays for diffraction purposes, as well as directing the assembly of molecular electronic devices. There are wellcharacterized molecular transformations of DNA that make nano-scale machines feasible to build in this molecular context. These materials are likely to be useful for understanding crystallization processes and structure-function relationships.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kabsch, W., and Vandekerckhove, J., Ann. Rev. Biophys.Biomol. Struc. 21, 4976 (1992).Google Scholar
2. Erickson, H.P., and O'Brien, E.T., Ann. Rev. Biophys.Biomol.Struc. 21, 145166 (1992).Google Scholar
3. Blair, D.F., Nanotechnology 2, 123133 (1991).Google Scholar
4. Bowie, J.U., Luthy, R., and Eisenberg, D., Science 253, 164170 (1991).Google Scholar
5. Yue, K. and Dill, K.A., Proc. Natl. Acad. Sci. (USA) 89, 41634167 (1992).Google Scholar
6. Urry, D.W., Gowda, D.C., Peng, S.Q.. Parker, T.M. and Harris, R.D., J. Am. Chem. Soc. 114, 87168717 (1992).Google Scholar
7. Stoddard, B.L. and Koshland, D.E. Jr.,, Nature (London) 358, 774776 (1992).Google Scholar
8. Holliday, R., Genet. Res. 5, 282304 (1964).Google Scholar
9. Thompson, B.J., Camien, M.N., and Warner, R.C., Proc. Natl. Acad. Sci. (USA) 73, 22992303 (1976).Google Scholar
10.. Seeman, N.C., J. Theor. Biol. 99, 237247 (1982)..Google Scholar
11. Seeman, N.C., J. Biomol. Str. & Dyns. 8, 573581 (1990).Google Scholar
12. Kallenbach, N.R., Ma, R.I. and Seeman, N.C.,Nature (London) 305, 829831 (1983).Google Scholar
13. Lu, M., Guo, Q., Marky, L.A.,Seeman, N.C. and Kallenbach, N.R.,J. Mol. Biol. 223, 781789 (1992).Google Scholar
14. Cohen, S.N., Chang, A.C.Y., Boyer, H.W. and Helling, R.B., Proc. Natl. Acad. Sci. (USA) 70, 32403244 (1973).Google Scholar
15. White, J.H., Millett, K.C. and Cozzarelli, N.R., J Mol. Biol.197,585603(1987).Google Scholar
16. Seeman, N.C., Biomol, J.. Str. & Dyns. 3, 1134 (1985).Google Scholar
17. Seeman, N.C., J. Mol. Graphics 3, 3439 (1985).Google Scholar
18. Wells, A.F., Three-dimensional Nets and Polyhedra (John Wiley & Sons, New York, 1977).Google Scholar
19. Ma, R.-I., Kallenbach, N.R., Sheardy, R.D., Petrillo, M.L. and Seeman, N.C., Nucl. Acids Res. 14, 97459753 (1986).Google Scholar
20. Petrillo, M.L., Newton, C.J., Cunningham, R.P., Ma, R.-I., Kallenbach, N.R. and Seeman, N.C., Biopolymers 27, 13371352 (1988).Google Scholar
21. Hagerman, P.J., Ann. Rev. Biophys. & Biophys. Chem. 17, 265—286 (1988).Google Scholar
22. Chen, J.-H., Kaltenbach, N.R. and Seeman, N.C., J. Am. Chem. Soc. 111, 64026407 (1989).Google Scholar
23. Wang, Y., Mueller, J.E., Kemper, B. and Seeman, N.C. Biochem. 30, 56675674, (1991).Google Scholar
24. Chen, J. and Seeman, N.C., Nature 350, 631633 (1991).Google Scholar
25. Williams, R., The Geometrical Foundation of Natural Structure (Dover, New York, 1979).Google Scholar
26. Seeman, N.C., Biomol, J.. Str. & Dyns. 5, 9771004 (1988).Google Scholar
27. Zhang, Y. and Seeman, N.C., J. Am. Chem.Soc. 114, 26562663 (1992).Google Scholar
28. Seeman, N.C., DNA and Cell Biology 10, 475486 (1991).Google Scholar
29. Wang, A.H.-J., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. and Rich, A., Nature 282, 680686 (1979).Google Scholar
30. Behe, M. and Felsenfeld, G., Proc. Natl. Acad. Sci. (USA) 78, 16191623 (1981).Google Scholar
31. Mueller, J.E.,Du, S.M. and Seeman, N.C.,J. Am.Chem.Soc.113,63066308 (1991).Google Scholar
32. Du, S.M. and Seeman, N.C., J. Am. Chem.Soc. 114, 96529655 (1992).Google Scholar
33. Seeman, N.C., Molecular Engineering 2, in press (1992).Google Scholar
34. Caruthers, M.H., in Chemical and Enzymatic Synthesis of Gene Fragments. ed. by Gassen, H.G. and Lang, A., (Verlag Chemie, Weinheim, 1982) pp. 7179.Google Scholar
35. Chrisey, L.A. (1990), Synthecell Synthesis 2(1), 465.Google Scholar
36. Robinson, B.H. and Seeman, N.C., Prot. Eng. 1, 295300 (1987).Google Scholar
37. Gellert, M., Mizuuchi, K., O'Dea, M.H., Ohmori, H. and Tomizawa, J., Cold Spring Harbor Symp. Quant. Biol. 43, 3540 (1978).Google Scholar
38. Allison, D.P., Bottomley, L.A., Thundat, T., Brown, G.M., Woychik, R.P., Schrick, J.J., Jacobson, K.B. and Warmack, R.J., Proc. Natl. Acad Sci. (USA) 89, 1012910133 (1992).Google Scholar