Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-19T05:43:21.146Z Has data issue: false hasContentIssue false

Nonvolatile memories based on AlOx embedded ZrHfO high-k gate dielectric

Published online by Cambridge University Press:  17 June 2014

Shumao Zhang
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Xi Liu
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A. Deptartment of Industrial and Systems Engineering, Ohio University, Athens, OH 45701, U.S.A.
Chi-Chou Lin
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Get access

Abstract

MOS capacitors with the ZrHfO/AlOx/ZrHfO high-k gate dielectric stack were prepared and characterized for memory functions. The device prefers to trap holes, i.e., under the negative gate voltage, rather than electrons, i.e., under the positive voltage. The hole-trapping process is time and voltage dependent. The weakly trapped holes are quickly released upon the remove of the stress voltage. However, more than 30% of the originally trapped holes can be retained in the device after 10 years. The AlOx embedded ZrHfO high-k stack is a suitable gate dielectric structure for nonvolatile memories.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

White, M. H., Adams, D. A., and Bu, J., IEEE Circuits Devices Mag. 16, 22 (2000).CrossRefGoogle Scholar
Bu, J. and White, M. H., Solid State Electron. 45, 113 (2001).CrossRefGoogle Scholar
Wang, X., Liu, J., Bai, W. and Kwong, D.-L., IEEE Trans. Electron Devices 51, 597 (2004).CrossRefGoogle Scholar
Tan, Y. N., Chim, W. K., Choi, W. K., Joo, M. S., and Cho, B. J., IEEE Trans. Electron Devices 53, 654 (2006).CrossRefGoogle Scholar
Sugizaki, T., Kobayashi, M., Ishidao, M., Minakata, H., Yamaguchi, M., Tamura, Y., Sugiyama, Y., Nakanishi, T., and Tanaka, H., VLSI Symp. Tech. Dig. pp. 27 (2003).Google Scholar
Nakata, S., Nagai, S., Kumeda, M., Kawae, T., Morimoto, A., and Shimizu, T., J. Vac. Sci. Technol. B 26, 1373 (2008).CrossRefGoogle Scholar
Shim, S. I., Yeh, Frank C., Wang, X. W., and Ma, T. P., IEEE Electron Device Lett. 29, 512 (2008).CrossRefGoogle Scholar
Choi, S., Cho, M., and Hwang, H., J. Appl. Phys. 94, 5408 (2003).CrossRefGoogle Scholar
Lee, C.-H., Hur, S.-H., Shin, Y.-C., Choi, J.-H., Park, D.-G., and Kim, K., Appl. Phys. Lett. 86, 152908 (2005).CrossRefGoogle Scholar
Wang, X. and Kwong, D. L., IEEE Trans. Electron Devices 53, 78 (2006).CrossRefGoogle Scholar
Kuo, Y., Lu, J., Chatterjee, S., Yan, J., Kim, H. C., Yuan, T., Luo, W., Peterson, J., and Gardner, M., ECS Trans. 1, 447 (2006).CrossRefGoogle Scholar
Yan, J., Kuo, Y., and Lu, J., Electrochem. Solid-State Lett. 10, H199 (2007).CrossRefGoogle Scholar
Lin, C.-H. and Kuo, Y., Electrochem. Solid-State Lett. 13, H83 (2010).CrossRefGoogle Scholar
Yang, C.-H., Kuo, Y., Lin, C.-H. and Kuo, W., Electrochem. Solid-State Lett. 14, H50 (2011).CrossRefGoogle Scholar
Lin, C.-H. and Kuo, Y., J. Electrochem. Soc. 158, H756 (2011).CrossRefGoogle Scholar
Hauser, J. and Ahmed, K., Characterization and Metrology for ULSI Technology (AIP, New York 1998), p. 235.Google Scholar
Lin, C.-H. and Kuo, Y., J. Electrochem. Soc. 159, H214 (2012).CrossRefGoogle Scholar
Birge, A., Lin, C.-H., and Kuo, Y., J. Electrochem. Soc. 154, H887 (2007).CrossRefGoogle Scholar
Zhu, C., Xu, Z., Huo, Z., Zheng, Z., Cui, Y., Wang, Y., Liu, J., Li, F. and Liu, M., J. Phys. D: Appl. Phys. 45, 065104 (2012).CrossRefGoogle Scholar
Nakata, S., Saito, K., and Shimada, M., Appl. Phys. Lett. 87, 223110 (2005).CrossRefGoogle Scholar
Lee, S., Song, E. B., Kim, S. M., Lee, Y., Seo, D. H., Seo, S., and Wang, K. L., Appl. Phys. Lett. 101, 243109 (2012).CrossRefGoogle Scholar
Lin, C.-C. and Kuo, Y., ECS J. Solid State Sci. Technol. 2, Q16 (2013).CrossRefGoogle Scholar
Siegel, D. J., Hector, L. G. Jr., Adams, J. B., Phys. Rev. B 65, 085415 (2002).CrossRefGoogle Scholar
Zheng, W., Bowen, K. H. Jr., Li, J., Daűbkowska, I., and Gutowski, M., J. Phys. Chem. A 109, 11521 (2005).CrossRefGoogle Scholar
Lin, C.-C., Kuo, Y., and Zhang, S., J. Vac. Sci. Technol. B 32(3), 03D116-1 (2014).CrossRefGoogle Scholar
Lin, C.-H. and Kuo, Y., J. Appl. Phys. 110, 024101 (2011).CrossRefGoogle Scholar