Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T12:22:38.309Z Has data issue: false hasContentIssue false

Observations of Orientation Dependent Creep of Ni3AI

Published online by Cambridge University Press:  10 February 2011

Carola Knobloch
Affiliation:
TU Berlin, Inst. f. Metallische Werkstoffe, BH 18, D-10623 Berlin, Germany
Karin Glock
Affiliation:
Universität Jena, Metallische Werkstoffe, D-07743 Jena, Germany, uwe.glatzel@uni-jena.de
Uwe Glatzel
Affiliation:
Universität Jena, Metallische Werkstoffe, D-07743 Jena, Germany, uwe.glatzel@uni-jena.de
Get access

Abstract

The influence of crystal orientation on the high temperature creep behavior of Ni3(Al Ti Ta) was investigated by tensile creep testing under a constant load at a temperature of 1123K. The single crystals were oriented close to [001], [011], [111], [557] and [012]. The results show an increasing stationary creep rate from [111] over [011] to [001]. The evolution of the microstructure during creep deformation was studied, using transmission electron microscopy (TEM). Only few systems are active in the primary regime, whereas several slip systems operate in the secondary stage. Habit planes of dislocation pairs separated by an antiphase boundary were examined and compared with anisotropic elastic calculations, explaining the good creep response of [111] oriented single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, P. and Ezz, S. S., Intern. Metals Reviews 29, 136 (1984)Google Scholar
2. Schneibel, J. H. and Horton, J. A., J. Mater. Res. 3, 651 (1988)CrossRefGoogle Scholar
3. Rong, T. S., Jones, I. P. and Smallman, R. E., Acta met. mat. 43, 1385 (1995)CrossRefGoogle Scholar
4. Hemker, K. J., Mills, M. J. and Nix., W. D., Acta met. mat. 39, 1901 (1991)CrossRefGoogle Scholar
5. Shah, M., Scripta met. 17, 997 (1983)CrossRefGoogle Scholar
6. Hemker, J. and Nix, W. D., Metall. Trans. A, 24A, 335 (1993)CrossRefGoogle Scholar
7. Nathal, V., Diaz, J. V. and Miner, R. V., Mat. Res. Soc. Symp. Proc. 133, 269 (1989)CrossRefGoogle Scholar
8. Wolfenstine, J., Kim, H. K. and Earthman, J. C., Materials Science&Engineering A 192/193, 811 (1994)Google Scholar
9. Miura, S., Peng, Z. and Mishima, Y. in High-Temperature Ordered Intermetallic Alloys VII, ed. by C. C. Koch, C. T. Liu, N. S. Stoloff and A. Wanner (Mater. Res. Soc. Proc. 460, Pittsburgh, PA, 1997), 431 Google Scholar
10. Knobloch, C., Toloraia, V. N. and Glatzel, U., Scripta mat. 37, 1491 (1997)CrossRefGoogle Scholar
11. Link, T., Knobloch, C. and Glatzel, U., Scripta mat., in pressGoogle Scholar
12. Hirth, P. and Lothe, J., Theory of Dislocations, (Wiley & Sons, New York, 1982), p. 436 Google Scholar
13. Scheunemann-Frerker, G. and Feller-Kniepmeier, M., Scripta met. mat. 24, 1381 (1990)CrossRefGoogle Scholar