Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-11T18:04:37.149Z Has data issue: false hasContentIssue false

Optical Absorption in Co-Deposited Mixed-Phase Hydrogenated Amorphous/Nanocrystalline Silicon Thin Films

Published online by Cambridge University Press:  01 February 2011

Lee Wienkes
Affiliation:
wienkes@physics.umn.edu, University of Minnesota, Physics, Minneapolis, Minnesota, United States
Aaron Besaw
Affiliation:
besaw010@umn.edu, University of Minnesota, Physics, Minneapolis, Minnesota, United States
Curtis Anderson
Affiliation:
curtis@me.umn.edu, University of Minnesota, Mechanical Engineering, Minneapolis, Minnesota, United States
David Bobela
Affiliation:
david.bobela@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Paul Stradins
Affiliation:
pauls_stradins@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Uwe Kortshagen
Affiliation:
uk@me.umn.edu, University of Minnesota, Mechanical Engineering, Minneapolis, Minnesota, United States
James Kakalios
Affiliation:
kakalios@umn.edu, University of Minnesota, Physics, Minneapolis, Minnesota, United States
Get access

Abstract

The conductivity of amorphous/nanocrystalline hydrogenated silicon thin films (a/nc-Si:H) deposited in a dual chamber co-deposition system exhibits a non-monotonic dependence on the nanocrystal concentration. Optical absorption measurements derived from the constant photocurrent method (CPM) and preliminary electron spin resonance (ESR) data for similarly prepared materials are reported. The optical absorption spectra, in particular the subgap absorption, are found to be independent of nanocrystalline density for relatively small crystal fractions (< 4%). For films with a higher crystalline content, the absorption spectra indicate broader Urbach slopes and higher midgap absorption. The ESR spectra show an approximately constant defect density across all of the films. These data are interpreted in terms of a model involving electron donation from the nanocrystals into the amorphous material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamamoto, K., IEEE Transactions on Electron Devices 46, 2041 (1999).Google Scholar
2 Yan, B., Yue, G., Owens, J. M., Yang, J., and Guha, S., Appl. Phys. Lett. 85, 1925 (2004).Google Scholar
3 Ostraat, M. L., Blauwe, J. W. D., Green, M. L., Bell, L. D., Brongersma, M. L., Casperson, J., Flagan, R.C., and Atwater, H. A., Appl. Phys. Lett. 79, 433 (2001).Google Scholar
4 Chang, T. C., Yan, S. T., Liu, P. T., Chen, C. W., Wu, H. H., and Sze, S. M., Appl. Phys. Lett. 85, 248 (2004).Google Scholar
5 Park, N., Kim, T., and Park, S., Appl. Phys. Lett. 78, 2575 (2001).Google Scholar
6 Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
7 Staebler, D. L. and Wronski, C. R., J. Appl. Phys. 51, 3262 (1980).Google Scholar
8 Cabarrocas, P. R., Hamma, S., St'ahel, P., Longeaud, C., Kleider, J. P., Meaudre, R., and Meaudre, M., in 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, edited by Ossenbrink, H. A., Helm, P. and Ehmann, H. (Bedford: H. S. Stephens & Associates, Bedford, 1997), p. 1444.Google Scholar
9 Adjallah, Y., Anderson, C., Kortshagen, U., and Kakalios, J., J. Appl. Phys. 107, 043704 (2010).Google Scholar
10 Vaněček, M., Kocka, J., Stuchlík, J., and Tríska, A., Solid State Commun. 39, 1199 (1981).Google Scholar
11 Jackson, W. B., Nemanich, R. J., and Amer, N. M., Phys.Rev. B 27, 4861 (1983).Google Scholar
12 Wyrsch, N., Finger, F., McMahon, T. J., and Vaněček, M., J. Non Cryst. Solids 137–138, 347 (1991).Google Scholar
13 Jackson, W. B., Amer, N. M., Boccara, A. C., and Fournier, D., Appl. Opt. 20, 1333 (1981).Google Scholar