Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T03:26:16.999Z Has data issue: false hasContentIssue false

Optical Properties of II-VI Semiconductor Doped Glass

Published online by Cambridge University Press:  21 February 2011

P. D. Persans
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180-3590
An Tu
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180-3590
M. Lewis
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180-3590
T. Driscoll
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180-3590
R. Redwing
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180-3590
Get access

Abstract

We review structural and optical properties of CdSxSe1−x semiconductor nanoparticles embedded in an insulating glass matrix. Vibrational Raman scattering and x-ray diffraction can be used to determine the composition of the crystallites for all X and sizes. Debye-Scherrer broadening of x-ray diffraction peaks from the crystallites yields an average grain size in the semiconductor crystallites of 60Å for the series studied here. Small angle x-ray scattering reveals that the average particle diameter is close to 120Å. Optical absorption, photoluminescence, and photomodulated absorption spectra are interpreted within a spherical quantum well model. Electron-phonon coupling and size distribution effects on the spectra are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jain, R.K. and Lind, R.C., J. Opt. Soc. Am., 73, 647, (1983).Google Scholar
2. Yao, S.S., Karaguleff, C., Gabel, A., Fortenberry, R., Seaton, C.T., and Stegemann, G.I., Appl. Phys. Lett., 46, 801,(1985).Google Scholar
3. Rousignol, P., Ricard, D., Lucasik, J., and Flytzanis, C., J.Opt. Soc. Am., B 4, 5, (1987).Google Scholar
4. Gibbs, H.M., et al. , Appl. Phys. Lett., 41, 221, (1982).Google Scholar
5. Borrelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. Phys., 5399, (1987).Google Scholar
6. Potter, B.G. Jr., and Simmons, J.H., Phys. Rev. B, 10838, (1988).Google Scholar
7. Chang, R. K. Ralston, J. M. and Keating, D. E., “Light Scattering in Solids”, edited by Wright, (Springer-Verlag Inc., New York, 1969), p369.Google Scholar
8. Parrish, J. F., Perry, C. H., Brafman, O., Chang, I. F. and Mitra, S. S., “II-VI Semicon-ducting Compounds 1967 International Conference”, p11164, Thomas, D. G. (ed.), W. A. Benjamin, New York, 1967.Google Scholar
9. Lu, E., Persans, P. D., Rajan, K., Phys. Rev. B, submitted.Google Scholar
10. Richter, H., Wang, Z., and Ley, L., Sol. St. Commun., 39, 625, (1981).Google Scholar
11. Zhao, X.-S., Schroeder, J., Persans, P. D., and Lu, E., Phys. Rev. B, submitted; and these proceedings.Google Scholar
12. Persans, P. D., Tu, A., Wu, T.-J., Lewis, M., J. Am. Opt. Soc., B 6, 818, (1989).Google Scholar
13. Kurik, M. V., Phys. Stat. Sol., (a), 8, 9 (1971).Google Scholar
14. Khansevorov, Ryvkin and , Ageeva, J. Tech. Phys. USSR, 28, 480(1958).Google Scholar
15. Brus, L. E., J. Chem. Phys. 80, 4403, (1984).Google Scholar
16. Alivisatos, A. P., Harris, T. D., Carroll, P. J., Steigerwald, M. L., Brus, L. E., J. Chem. Phys., in press.Google Scholar
17. Roussignol, P., Ricard, D., and Flytzanis, C., Phys. rev. Lett., 62, 312, (1989).Google Scholar
18. Schmitt-Rink, S., Miller, D. A. B., and Chemla, D. S., Phys. Rev. B, 35, 8113, (1987).Google Scholar
19. Redwing, R., Master's Thesis, Rensselaer Polytechnic Institute, 1988.Google Scholar
20. Stephens, R.B., Phys. Rev. B, 29, 3283, (1984).Google Scholar