Published online by Cambridge University Press: 15 February 2011
The effects of oxygen precipitation on the minority carrier recombination lifetime (TR) and the carrier generation lifetime (TG) have been characterized for a ‘typical’ silicon crystal grown with the Czochralski method. Infrared (IR) absorption measurements were obtained on polished wafers, before and after 2 step thermal anneals at 800°C and 1050°C to characterize the axial distribution of interstitial and precipitated oxygen in the ingot. Computerized measurements on NMOS diode and capacitor arrays were used to characterize the axial and radial distributions of carrier lifetime. The results indicate that oxygen precipitation is the dominant mechanism contributing to the degradation of both minority carrier recombination andgeneration lifetime.