Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T09:14:44.022Z Has data issue: false hasContentIssue false

Phase Stability in Processing of High Temperature Intermetallic Alloys

Published online by Cambridge University Press:  15 February 2011

J. H. Perepezko
Affiliation:
Dept. Mat. Sci. and Engr., University of Wisconsin-Madison, 1509 Univ. Ave., Madison, WI53706
C. A. Nuñes
Affiliation:
Dept. Mat. Sci. and Engr., University of Wisconsin-Madison, 1509 Univ. Ave., Madison, WI53706
S.-H. Yi
Affiliation:
Dept. Mat. Sci. and Engr., University of Wisconsin-Madison, 1509 Univ. Ave., Madison, WI53706
D. J. Thoma
Affiliation:
Los Alamos National Laboratory, CMS, K765, Los Alamos, NM 87545
Get access

Abstract

In the development of high temperature intermetallics involving various aluminides, suicides and Laves phases, it has become evident that it is essential to consider the strong influence of materials processing throughout all stages. The underlying basis for alloy synthesis, processing and the assessment of thermal stability is established by the relevant phase equilibria, the characteristic diffusivities and the possible solidification reaction pathways. In almost all cases the microstructures of the most useful metallic alloys are multiphase assemblies in which the relative phase fractions, compositions and morphologies play key roles in optimizing the performance under high temperature conditions. The microstructure designs are usually tailored for strength, toughness, creep resistance and environmental stability and involve a balance of features derived from mixtures of a ductile phase and intermetallic phases. There is a clear experience that the level of materials processing can only be as sophisticated as the level of knowledge of the phase equilibria and the underlying kinetics. In many of the contemporary intermetallic alloys the phase stability must be considered in terms of multicomponent equilibria and non-stoichiometric intermetallic compositions. Recent developments in several important intermetallic alloy classes illustrate the guidance into alloy design and processing options provided by systematic studies of phase stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fleischer, R.L., J. Mater. Sci. 22, 2281 (1987).Google Scholar
2. Meier, G.H. and Pettit, F.S., Mater. Sci. and Tech. 8, 331 (1992).Google Scholar
3. Inden, G. and Pitsch, W., Materials Science and Technology, Volume 5 Phase Transformations in Materials, ed. Haasen, P., (VCH, NY) p. 497 (1991).Google Scholar
4. Perepezko, J.H., Intermetallic Compounds: Vol. 1, Principles, ed. Westbrook, J.H. and Fleischer, R.L., (J. Wiley, NY) p. 849 (1994).Google Scholar
5. Dimiduk, D.M., Miracle, D.B. and Ward, C.H., Mater. Sci. and Tech. 8, 367 (1992).Google Scholar
6. George, E.P., Yamaguchi, M., Kumar, K.S. and Liu, C.T., Annu. Rev. Mater. Sci. 24, 409 (1994).Google Scholar
7. Turich, P.E.A., Intermetallic Compounds: Vol. 1, Principles, ed. Westbrook, J.H. and Heischer, R.L., (J. Wiley, NY) p. 21 (1994).Google Scholar
8. Carlsson, A.E. and Meschter, P.J., Intermetallic Compounds: Vol. 1, Principles, ed. Westbrook, J.H. and Heischer, R.L., (J. Wiley, NY) (1994), p. 55 Google Scholar
9. Stoloff, N.A., Superallovsll. ed. Sims, C.T., (J. Wiley, NY) p. 61 (1987)Google Scholar
10. Ross, E.R. and Sims, C.T., Superallovsll. ed. Sims, C.T., (J. Wiley, NY) p. 97 (1987)Google Scholar
11. Dyson, B.F. and McLean, M., JISI Int. 30, 802 (1990).Google Scholar
12. Ward, C.H., Int. Mat. Rev., 38, 79 (1993).Google Scholar
13. Kim, Y.W. and Dimiduk, D., Jnl Metals, 43, 40 (1991).Google Scholar
14. Naka, S., Thomas, M. and Khan, T., Mat. Sci. and Tech. 8, 291 (1992).Google Scholar
15. Shechtman, D., Boettinger, W.J., Kattamis, T.Z. and Biancaniello, F.S., Acta Metall. 32, 749 (1984).Google Scholar
16. Thomas, M., Naka, S. and Khan, T., Mat. Trans. JIM 35, 787 (1994).Google Scholar
17. Isida, K., Kainuma, R., Ueno, N. and Nishizawa, T., Met. Trans. 22A, 441 (1991).Google Scholar
18. Jung, I. and Sauthoff, G., Z. Metalik. 80, 484 (1989).Google Scholar
19. Allen, W.J.P., Foley, J.C., Cooper, R.F. and Perepezko, J.H., Mater. Res. Soc, Symp. Proc, 194, 405 (1990).Google Scholar
20. Field, R.D., Darolia, R., and Lahrman, D.F., Scripta Metall., 23, 1469 (1989).Google Scholar
21. Dimiduk, D.M., Mendiratta, M.G., Banerjee, D. and Lipsitt, H.A., Acta Metall., 36, 2947 (1988).Google Scholar
22. Nemoto, M., Critical Issues in the Development of High Temperature Structural Materials, eds. Stoloff, N.S., Duquette, D.J. and Giamei, A.F. (The Metallurgical Society, Warrendale, PA) 203 (1993).Google Scholar
23. Yang, R., Leake, I.A. and Cahn, R.W., Jnl. Mater. Res., 6, 343 (1991).Google Scholar
24. Yang, R., Saunders, N., Leake, J.A. and Cahn, R.W., Acta Metall. Mater., 40, 1553 (1992).Google Scholar
25. Yang, R., Leake, J.A. and Cahn, R.W., Mater. Sci. Engr. A, 152, 227 (1992).Google Scholar
26. Yang, R., Leake, J.A. and Cahn, R.W., Mat. Res. Soc. Symp. Proc., 288, 489 (1993).Google Scholar
27. Hsiung, L.C. and Bhadeshia, H.K.D.H., Metall and Mater. Trans., 26A, 1895 (1995).Google Scholar
28. Huang, S.C., Structural bitermetallics. eds. Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathal, M.W. (The Minerals, Metals & Materials Society, Warrendale, PA) 299 (1993).Google Scholar
29. Masahasi, N., Mizuhara, Y., Hanamura, T., Kimura, M. and Hashimoto, K., ISIJ Int., 31, 728 (1991).Google Scholar
30. Nobuki, M., Vanderschueren, D. and Nakamura, M., Acta Metall. Mater., 42, 2623 (1991).Google Scholar
31. Anada, H. and Snida, Y., Mater. Trans. JIM, 36, 533 (1995).Google Scholar
32. Snow, D.B., Anton, D.L., Nazy, M.Y. and Staubli, M., Mat. Res. Soc. Symp. Proc, 288, 717 (1993).Google Scholar
33. Inkson, B.J., Boothroyd, C.B. and Humphreys, C.J., Acta Metall. Mater., 41, 2867 (1993).Google Scholar
34. Böhm, V.H. and Löhberg, K., Z.Metallkde., 49, 173 (1958).Google Scholar
35. Banerjee, D., Krishman, R.V. and Vasu, K.I., Met. Trans., 11A, 1095 (1980).Google Scholar
36. Das, S., Mishurda, J.C., Allen, W.P., Perepezko, J.H. and Chumbley, L.S., Scripta Metall. Mater., 28, 489 (1993).Google Scholar
37. Das, S., Howe, J.M. and Perepezko, J.H., Metall. and Mater. Trans., 27A, 1623 (1996).Google Scholar
38. Meier, G.H. and Pettit, F.S., Mater. Sci. and Tech., 8, 331 (1992).Google Scholar
39. Ramberg, C.E., Beatrice, P., Kurokawa, K. and Worrell, W.L., Mat. Res. Soc. Symp. Proc., 322, 243 (1994).Google Scholar
40. Vasudevan, A.K. and Petrovic, J.I., Mater. Sci. Engr., A155, 1 (1992).Google Scholar
41. Shah, D.M., Berczik, D., Anton, D. and Hecht, R., Mater. Sci. Engr., A155, 45 (1992).Google Scholar
42. Alman, D.E. and Stoloff, N.S., Mat. Res. Soc. Symp. Proc., 322, 255 (1994).Google Scholar
43. Boettinger, W.I., Perepezko, I.H. and Frankwicz, P.S., Mater. Sci. Engr., A155, 33 (1992).Google Scholar
44. Chin, S., Anton, D.L. and Giamei, A.F., Mat. Res. Soc. Symp. Proc., 322, 423 (1994).Google Scholar
45. Nowotny, H., Benesovsky, F., Rudy, E. and Wittmann, A., Mon. Chem., 91, 975 (1960).Google Scholar
46. Kumar, K.S., Int. Mat. Rev. 35, 293 (1990)Google Scholar
47. Erickson, G.L., Critical Issues in the Development of High Temperature Structural Materials, eds. Stoloff, N.S., Duquette, D.J. and Giamei, A.F. (The Metallurgical Society, Warrendale, PA) 87 (1993).Google Scholar
48. Livingston, I.D., Phys. Stat. Sol. (a) 131, 415 (1992).Google Scholar
49. Livingston, I.D., Mat. Res. Soc. Symp. Proc., 322, 395 (1994).Google Scholar
50. Fleischer, R.L. and Zabala, R.J., Metall. Trans. A, 21A, 2149 (1990).Google Scholar
51. Thoma, D.J. and Perepezko, J.H., Mater. Sci. Eng., A156, 97 (1992).Google Scholar
52. Anton, D.L. and Shah, D.M., Mat. Res. Soc. Symp. Proc, 288, 141 (1993).Google Scholar
53. Ravichandran, K.S., Miracle, D.B. and Mendiratta, M.G., Metall. Mater. Trans. A, 27A, 2583 (1996).Google Scholar
54. Liu, C.T., Tortorelli, P.F., Horton, J.A. and Carmichael, C. A., Mater. Sci. Eng., A214, 23 (1996).Google Scholar
55. Laves, F.. Theory of Alloy Phases, (ASM, Cleveland, OH) 123 (1956).Google Scholar
56. Thoma, D.J. and Perepezko, J.H., J. Alloys Comp., 224, 330 (1995).Google Scholar
57. Thoma, D.J. and Perepezko, J.H., Experimental Methods of Phase Diagram Determination, eds. Morral, J.E., Schiffman, R.S. and Merchant, S.M. (TMS, Warrendale, PA) 45 (1994).Google Scholar
58. Liu, Y., Allen, S.M. and Livingston, J.D., Mat. Res. Soc. Symp. Proc., 288, 203 (1993).Google Scholar