Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T13:36:20.925Z Has data issue: false hasContentIssue false

Photoluminescence transformation of core/shell CdSe/ZnS quantum dots at the conjugation to biomolecules

Published online by Cambridge University Press:  19 March 2012

T. V. Torchynska
Affiliation:
ESFM – Instituto Politécnico Nacional, México D. F. 07738, México,
I. Ch. Ballardo Rodríguez
Affiliation:
UPIITA- Instituto Politécnico Nacional, México D. F. 07738, México,
Ye. Shcherbyna
Affiliation:
National Technical University – “KPI”, Kiev, 03056, Ukraine
Get access

Abstract

The paper presents the results of PL spectrum analysis of CdSe/ZnS QDs covered by PEG polymer with and without bioconjugation to bio-molecules .– the Osteopontin antibodies. Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 640 nm (1.96 eV) at 300K. It is shown that PL spectra of nonconjugated QDs can be presented as a superposition of PL bands related to exciton emission in the CdSe core (1.96 eV) and some high energy PL bands (in the spectral range 2.37 .– 3.00 eV). The comparative study of PL spectrum at high (300K) and low (10K) temperatures has testified that high energy PL bands deal with electronhole emission via interface states at the CdSe/ZnS/polymer interfaces.

It is revealed that the QD bioconjugation to the anti Osteopontin antibody is accompanied by the change dramatically in PL spectra. Main features of PL spectrum transformstions deal with decreasing the PL intensity of interface related PL bands and the rise of intensity of CdSe core related PL bands. The explanation of mentioned effects has been proposed on the base of re-charging of interface related states at the bioconjugation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dybiec, M., Chomokur, G., Ostapenko, S., Wolcott, A., Zhang, J. Z., Zajac, A., Phelan, C., Sellers, T., Gerion, G., Appl. Phys. Lett. 90, 263112 (2007).Google Scholar
2. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J., J. Chem. Phys. 115, 1028 (2001).Google Scholar
3. Mews, A., Eychmuller, A., Giersig, M., Schoos, D., Weller, H., J. Phys. Chem. 98, 934 (1994).Google Scholar
4. Ebenstein, Y., Mokari, T., Banin, U., J. Phys. Chem. B 108, 93 (2004).Google Scholar
6. Torchynska, T. V., Douda, J., Ostapenko, S. S., Jimenez-Sandoval, S., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., J. of Non-Crystal. Solid. 354, 2885 (2008).Google Scholar
7. Torchynska, T. V., Diaz Cano, A., Dybic, M., Ostapenko, S., Morales Rodrigez, M., Jimenes Sandoval, S., Vorobiev, Y., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., phys. stat. sol. (c), 4, 241 (2007).Google Scholar
8. Torchynska, T. V., Douda, J., Calva, P. A., Ostapenko, S. S. and Peña Sierra, R.. J. Vac. Sci. &Technol. 27(2), 836 (2009).Google Scholar
9. Torchynska, T. V., Douda, J., and Peña Sierra, R., phys. stat. sol. (c), 6, S143 (2009).Google Scholar
10. Torchynska, T.V., Nanotechnology, 20, 095401 (2009).Google Scholar
11. Klimov, V. I., McBranch, D. W., Leatherdale, C. A., Bawendi, M. G., Phys. Rev. B, 60, 13740 (1999).Google Scholar
12. Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., phys. stat. sol (a), 60, 565 (1980).Google Scholar
13. Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Physics C: Solid Sttate Physics, 13, 2975 (1980).Google Scholar
14. Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. Chem. Solids, 43, 475 (1982).Google Scholar
15. Torchynska, T.V., Diaz Cano, A., Morales Rodriguez, M., Khomenkova, L. Yu., Physica B, Conden, Matter. 340-342, 1113 (2003).Google Scholar
16. Khomenkova, L., Korsunska, N., Sheinkman, M., Stara, T., Torchynska, T.V., Vivas Hernandez, A., J. Lumines. 115, 117 (2005).Google Scholar
17. Torchynska, T.V., Korsunskaya, N., Dzumaev, B.R., Khomenkova, L.Yu., J. Phys. Chem. Solids, 61, 937 (2000).Google Scholar
18. Torchynska, T.V., Sheinkman, M.K., Korsunskaya, N.E., Khomenkova, L.Yu, Bulakh, B.M., Dzhumaev, B.R., Many, A., Savie, E., Godstein, Y., Physica B, Conden. Matter. 273-274, 955 (1999).Google Scholar
19. Chambon, E., Florentin, E., Torchynska, T., Gonzalez Hernandez, J., Vorobiev, Y., Microelectron. J., 36, 514 (2005).Google Scholar