Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:51:13.789Z Has data issue: false hasContentIssue false

A Planar Electroosmotic Micropump for Lab-on-Microchip Applications

Published online by Cambridge University Press:  01 February 2011

Konstantin Seibel
Affiliation:
konstantin.seibel@uni-siegen.de, University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, D-57076, Germany, +492717402466, +492717404512
Lars Schöler
Affiliation:
lars.schoeler@uni-siegen.de, University of Siegen, Institute for Microsystem Technologies, Siegen, Germany
Heiko Schäfer
Affiliation:
heiko.schaefer@uni-siegen.de, University of Siegen, Institute for Microsystem Technologies, Siegen, Germany
Marcus Walder
Affiliation:
marcus.walder@uni-siegen.de, University of Siegen, Institute for Microsystem Technologies, Siegen, Germany
Markus Böhm
Affiliation:
markus.boehm@uni-siegen.de, University of Siegen, Institute for Microsystem Technologies, Siegen, Germany
Get access

Abstract

The scope of the paper is to provide a theoretical and experimental treatment allowing to optimize critical design parameters for planar electroosmotic micropumps. The suggested design with a vertical arrangement of multiple narrow polymer pumping microchannels reduces the pump area to 1/10 compared to planar micropumps with widened shallow pumping channels. This design allows the fabrication of the channel system in only one process step, compatible with post-CMOS processing and suitable for monolithical integration on labchips. A simple analytical model has been developed to characterize the flow rate in a field free pressure-driven section of the channel. It is shown that the micropump with optimized dimensions of rib structures makes possible high pressure low voltage pumping. For high pressure capacity the distance between the ribs must be on the order of 0.5-1 µm with an aspect ratio of 10-20. The electroosmotic micropump with microchannels of SU-8 and polyacrylamide gel electrodes has been fabricated and tested. The pumping rate is bidirectionally linear and reached 10 nl/min at applied voltage of 40 V in 1 cm long pressure-driven channel, which corresponds to zero-flow pressure of 65 Pa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chemnitz, S., Schäfer, H., Schumacher, S., Kozij, V., Fischer, A., Meixner, A., Ehrhardt, D., Böhm, M., Proc. of SPIE, Vol. 5116, 782789, 2003.Google Scholar
2. Schäfer, H., Chemnitz, S., Seibel, K., Kozij, V., Fischer, A., Ehrhardt, D., Böhm, M., in The Nano-Micro Interface, edited by Fecht, H., Werner, M. (WILEY-VCH Verlag, Weinheim, 2004) p. 119.Google Scholar
3. Schäfer, H., Seibel, K., Walder, M., Schöler, L., Pletzer, T., Waidelich, M., Ihmels, H., Schmittel, M., Ehrhardt, D. and Böhm, M., Proc. of µ TAS 2004, Malmö, Sweden, pp. 443445.Google Scholar
4. Schäfer, H., Seibel, K., Walder, M., L. Schöler, Pletzer, T., Waidelich, M., Ihmels, H., Schmittel, M., Ehrhardt, D. and Böhm, M., Technical digest of 18-th IEEE International Conference on MEMS, Miami Beach, Florida, USA (2005), pp. 758761.Google Scholar
5. Schöler, L., Lange, B., Seibel, K., Schäfer, H., Walder, M., Friedrich, N., Ehrhardt, D., Schönfeld, F., Zech, G., M. Böhm, Microelectronic Engineering 78-79, 164170 (2005).Google Scholar
6. Seibel, K., Schöler, L., Walder, M., Schäfer, H., Schäfer, A., Pletzer, T., Püschl, R., Waidelich, M., Ihmels, H., Ehrhardt, D., and Böhm, M. in Materials, Integration and Technology for Monolithic Instruments, edited by Theil, J., Böhm, M., Gardner, D., Blalock, T., (Mater. Res. Soc. Symp. Proc. 869, Warrendale, PA, 2005) pp. 119124.Google Scholar
7. Laser, D. and Santiago, J., J. Micromech. Microeng., 14, pp. R35–R64 (2004).Google Scholar
8. Chen, C. H. and Santiago, J., IEEE J. of MEMS, vol. 11, No. 6, pp. 672683 (2002).Google Scholar
9. Zeng, S., Chen, C. H., Mikkelsen, J., Santiago, J., Sensors and Actuators B 79, pp. 107114 (2001).Google Scholar
10. Zeng, S., Chen, C. H., Santiago, J., Chen, J. R., Zare, R., Tripp, J., Svec, F., Fréchet, J., Sensors and Actuators B 82, pp. 209212 (2002).Google Scholar
11. Lazar, I. and Karger, B., Anal. Chem. 74, pp. 62596268 (2002).Google Scholar
12. Laser, D., Myers, A., Yao, S., Bell, K., Goodson, K., Santiago, J., and Kenny, T., Proc. Transducers 艃 03, Boston, MA, 2003.Google Scholar
13. Culbertson, C., Ramsey, R., and Ramsey, J. M., Anal. Chem. 72, pp. 22852291 (2000).Google Scholar
14. Takamura, Y., Onoda, H., Inokuchi, H., Adachi, S., Oki, A., Horiike, Y., Electrophoresis 24, pp. 185192 (2003).Google Scholar
15. Mutlu, S., Svec, F., Mastrangelo, C., Fréchet, J., Gianchandani, Y., Proc. IEEE MEMS 2004 Conference, Maastricht, The Netherlands, pp. 850853.Google Scholar
16. Sikanen, T., Tuomikoski, S., Ketola, R., Kostiainen, R., Franssila, S. and Kotiaho, T. T, Lab Chip, 5, pp. 888896 (2005).Google Scholar