Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T05:59:25.950Z Has data issue: false hasContentIssue false

Quadratic Nonlinear Optical Properties of Polymeric Organic Materials.

Published online by Cambridge University Press:  25 February 2011

L.-T. Cheng
Affiliation:
E. I. Du Pont de Nemours & Co., Inc., Central Research and Development Department, Experimental Station, P. O. Box 80356, Wilmington, Delaware 19880–0356
R. P. Foss
Affiliation:
E. I. Du Pont de Nemours & Co., Inc., Central Research and Development Department, Experimental Station, P. O. Box 80356, Wilmington, Delaware 19880–0356
G. R. Meredith
Affiliation:
E. I. Du Pont de Nemours & Co., Inc., Central Research and Development Department, Experimental Station, P. O. Box 80356, Wilmington, Delaware 19880–0356
W. Tam
Affiliation:
E. I. Du Pont de Nemours & Co., Inc., Central Research and Development Department, Experimental Station, P. O. Box 80356, Wilmington, Delaware 19880–0356
F. C. Zumsteg
Affiliation:
E. I. Du Pont de Nemours & Co., Inc., Central Research and Development Department, Experimental Station, P. O. Box 80356, Wilmington, Delaware 19880–0356
Get access

Abstract

We discuss our rational approach to incorporate optically nonlinear molecules into polymeric and cross-linked materials through the use of isocyanate-hydroxy coupling chemistry. Thin film fabrication, optical loss, poling, second harmonic generation, and electro-optic properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) For recent developments in poled polymers, see Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 32, (1991).Google Scholar
(2) See for example (a) Nonlinear Optical Properties of Organic Molecules and Crystals, edited by Chemia, D, S and Zyss, J., (Academic Press: New York, 1987), Vol 1 and 2.Google Scholar
(b) Cheng, L.-T., Tarn, W., Feiring, A., and Rikken, G., SPIE Proc., 1337, 203 (1990).Google Scholar
(c) Cheng, L.-T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G., and Marder, S. R., J. Phys. Chem. (1991), in press,Google Scholar
(d) Cheng, L.-T., Tam, W., Rikken, G., Marder, S. R., Stiegman, A. E., and Spangler, C. W., J. Phys. Chem. (1991), in press.Google Scholar
(3) Cahill, P. A. and Singer, K. D. in.; Material for Nonlinear Oprics: Chemical Perspectives, edited by Marder, S. R., Sohn, J. E., and Stucky, G. D., (ACS Symposium Series, 455, 1991) pp. 200.Google Scholar
(4) Marcuse, D., Bell Syst. Tech. J. 48, 3233 (1969); 48, 3187 (1969); 49, 273 (1970).Google Scholar
(5) Tien, P. K., Applied Optics, 10, 2395 (1971).Google Scholar
(6) See for example: Molecular Scattering of Light, Fabelinskii, I. L.; Plenum Press, New York, 1968, p166.Google Scholar
(7) See for example: Tanford, C., Physical Chemistry of Macromolecules, (Wiley, New York, 1961), Chapter 5.Google Scholar
(8) Singer, K. D., Kuzyk, M. G., and Sohn, J. E., J. Opt. Soc. Amer. B. 4, 968 (1987).Google Scholar