Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T11:49:57.605Z Has data issue: false hasContentIssue false

Reduced Pressure - Chemical Vapor Deposition of high Ge content (20% - 55%) SiGe virtual substrates

Published online by Cambridge University Press:  17 March 2011

Y. Bogumilowicz
Affiliation:
STMicroelectronics, 38 921 Crolles Cedex, France
J.M. Hartmann
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA / GRE - 17, Avenue des Martyrs 38 054 Grenoble Cedex 9, France
F. Laugier
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA / GRE - 17, Avenue des Martyrs 38 054 Grenoble Cedex 9, France
G. Rolland
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA / GRE - 17, Avenue des Martyrs 38 054 Grenoble Cedex 9, France
T. Billon
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA / GRE - 17, Avenue des Martyrs 38 054 Grenoble Cedex 9, France
V. Renard
Affiliation:
INSA Toulouse, 31077 Toulouse Cedex 4, France
E.B. Olshanetsky
Affiliation:
Institute of Semiconductor Physics, Novosibirsk 630 090, Russia
O. Estibals
Affiliation:
INSA Toulouse, 31077 Toulouse Cedex 4, France
Z.D. Kvon
Affiliation:
Institute of Semiconductor Physics, Novosibirsk 630 090, Russia
J.C. Portal
Affiliation:
INSA Toulouse, 31077 Toulouse Cedex 4, France Institut Universitaire de France, 75005 Paris, France
Get access

Abstract

We have studied the strain state, film and surface morphology of SiGe virtual substrates (Ge concentrations in-between 20% and 55%) grown by reduced pressure – chemical vapor deposition. The macroscopic degree of strain relaxation of those virtual substrates is equal to 97.2 ± 1.5%. The misfit dislocations generated to relax the lattice mismatch between Si and SiGe are mostly confined inside the graded layer. Indeed, the threading dislocations density obtained for Ge concentrations of 20% and 26% is indeed typically of the order of 7.5 ± 2.5 105 cm−2. Low surface root mean square roughness have been obtained, with values in-between 2 and 5 nm. In order to check the electronic quality of our layers, we have grown a MODFET-like heterostructure, with a buried tensile-strained Si channel 8 nm thick embedded inside SiGe 26%. We have obtained a well-behaved 2-dimensional electron gas in the Si channel, with electron sheet densities and mobilities at 1.45K of 5.4×1011 cm−2 and 212 000 cm2 V−1 s−1, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schäffler, F., Semicond. Sci. Technol. 12, 1515 (1997).Google Scholar
[2] Whall, T.E. and Parker, E.H. C., J. Phys. D : Appl. Phys. 31, 1397 (1998).Google Scholar
[3] Currie, M.T., Leitz, C.W., Langdo, T.A., Taraschi, G., Fitzgerald, E.A. and Antoniadis, D.A., J. Vac. Sci. Technol. B19, 2268 (2001).Google Scholar
[4] Leitz, C.W., Currie, M.T., Lee, M.L., Cheng, Z.-Y., Antoniadis, D.A. and Fitzgerald, E.A., J. Appl. Phys. 92, 3745 (2002).Google Scholar
[5] Hartmann, J.M., Bogumilowicz, Y., Holliger, P., Laugier, F., Truche, R., Rolland, G., Séméria, M.N., Renard, V., Olshanetsky, E.B., Estibal, O., Kvon, Z.D., Portal, J.C., Vincent, L., Cristiano, F. and Claverie, A., Semicond. Sci. Technol. 19, 311 (2004).Google Scholar
[6] Hartman, J.M., Champay, F., Loup, V., Rolland, G. and Séméria, M.N., J. Cryst. Growth 241, 93 (2002).Google Scholar
[7] Hartmann, J.M., Gallas, B., Zhang, J. and Harris, J.J., Semicond. Sci. Technol. 15, 370 (2000).Google Scholar
[8] Fitzgerald, E.A., Currie, M.T., Samavedam, S.B., Langdo, T.A., Tarashi, G., Yang, V., Leitz, C.W. and Bulsara, M.T., Phys. Status Solidi A 171, 227 (1999); E.A.Fitzgerald, A.Y.Kim, M.T.Currie, T.A.Langdo, G. Tarashi and M.T.Bulsara, Mater. Sci. Eng. B 67, 53 (1999).Google Scholar
[9] Ismail, K., Aarafa, M., Saenger, K.L., Chu, J.O. and Meyerson, B.S., Appl. Phys. Lett. 66, 1077 (1995).Google Scholar
[10] Känel, H. von, Kummer, M., Isella, G., Müller, E. and Hackbarth, T., Appl. Phys. Lett. 80, 2922 (2002).Google Scholar
[11] Samavedam, S.B., Taylor, W.J., Grant, J.M., Smith, J.A., Toblin, P.J., Dip, A., Phillips, A.M. and Liu, R., J. Vac. Sci. Technol. B 17, 1424 (1999).Google Scholar
[12] Fiorenza, J.G., Braithwaite, G., Leitz, C.W., Currie, M.T., Yap, J., Singaporewala, F., Yang, V.K., Langdo, T.A., Carlin, J., Sommerville, M., Lochtefeld, A., Badawi, H. and Bulsara, M.T., Semicond. Sci. Technol. 19, L4 (2004).Google Scholar