Published online by Cambridge University Press: 22 February 2011
Low temperature, resonantly excited photoluminescence (PL) has proven to be the method of choice for impurity identification in GaAs. InP has suffered from insufficient impurity binding energy data to benefit similarly. We will report results of selectively-excited donor-acceptor pair spectroscopy for acceptor identification in InP. Ion implantation doping of high purity InP is used for generation of known impurity samples. Progress toward a complete database of acceptor binding energies in InP is reported. We will discuss the results of high magnetic field low temperature resonant photoluminescence spectroscopy for donor identification in InP. The success of donor ion implantation studies will be included. This data should provide direction for efforts in growing high purity InP by MOCVD and gas source MBE.