Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T13:53:50.476Z Has data issue: false hasContentIssue false

Self-aligned TiSi2/Si Hetero-nanocrystal Nonvolatile Memory

Published online by Cambridge University Press:  01 February 2011

Yan Zhu
Affiliation:
yzhu@ee.ucr.edu, University of California, Riverside, Electrical Engineering, 900 University Ave, Riverside, CA, 92507, United States, 951-827-7131, 951-827-2425
Bei Li
Affiliation:
bli@ee.ucr.edu, University of California, Riverside, Department of Electrical Engineering, 900 University Ave, Riverside, CA, 92521, United States
Jianlin Liu
Affiliation:
jianlin@ee.ucr.edu, University of California, Riverside, Department of Electrical Engineering, 900 University Ave, Riverside, CA, 92521, United States
Get access

Abstract

This work describes a novel nonvolatile memory device with self-aligned TiSi2/Si hetero-nanocrystal charge storage nodes. The TiSi2/Si hetero-nanocrystals can be readily fabricated using industrial standard self-aligned silicidation technique based on Si nanocrystals deposited on ultra-thin tunnel oxide with LPCVD. As compared with a Si nanocrystal memory device, a TiSi2/Si hetero-nanocrystal memory device exhibits faster programming and erasing, and longer retention time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tiwari, S., et al. Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
[2] Shi, Y., Saito, K., Ishikuro, H., and Hiramoto, T., Jpn. J. Appl. Phys. 38, 425 (1999).Google Scholar
[3] Ho, V., Teo, L. W., Choi, W. K., Chim, W. K., and Tay, M. S., Appl. Phys. Lett., 83, 3558 (2003)Google Scholar
[4] Liu, Z. T., Lee, C., Narayanan, V., Pei, G., and Kan, E. C., IEEE Trans. Electron Dev. 49, 1606 (2002).Google Scholar
[5] Lee, C. H., Meteer, J., Narayanan, V., and Kan, E. C., J. Electron Mater. 34, 1 (2005).Google Scholar
[6] Lee, J. J., and Kwong, D. L., IEEE Trans. Electron Dev. 52, 507 (2005).Google Scholar
[7] Chang, T. C., Liu, P. T., Yan, S. T., and Sze, S. M., Electrochem. Solid-State Lett. 8, G71 (2005).Google Scholar
[8] Miura, Y., and Fujieda, S., J. Appl. Phys. 81, 6476 (1997).Google Scholar
[9] Ranjit, R., Zagozdzon-Wosik, W., Rusakova, I., Heide, P. van der, Zhang, Z. H., Bennett, J., and Marton, D., Rev. Adv. Mater. Sci. 8, 176 (2004).Google Scholar
[10] Lee, J. J. and Kwong, D. L., IEEE Trans. Electron Devices 52, 507 (2005).Google Scholar
[11] Korotkov, A. and Likharev, K., IEDM. Tech. Digest, pp. 223226, 1999.Google Scholar