Article contents
Small Angle Neutron Scattering from Nanophase Titanium As A Function of Oxidation
Published online by Cambridge University Press: 21 February 2011
Abstract
Nanophase titanium, prepared by the gas-condensation method both as aggregated powder and in lightly compacted discs, has been studied by conventional small angle neutron scattering, and by use of contrast variation methods. The contrast has been changed (a), isotopically, by means of deuterated/protonated solvents distilled into the specimen and (b) by progressive incremental oxidation of the Ti particles using fixed doses of low-pressure oxygen. It was shown that some evolution of the small angle pattern for lightly compacted nanophase Ti occurred over a period of several months at 300 K. Contrast matching by external solvent works well and has allowed the scattering lengths of oxidized and unoxidized specimens to be followed. The results imply that the scattering from metal and oxide can be separated under suitable conditions. The partial oxidation experiments indicate that there is both a fast and slow oxidation at 300 K. Also, during slow oxidation, high scattering length density scattering centers were formed whose number increased, but whose size remained the same at about 2 nm; these centers are tentatively assumed to be TiO2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989
References
REFERENCES
- 4
- Cited by