Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T18:19:52.702Z Has data issue: false hasContentIssue false

Soft X-Ray Emission Studies of the Electronic Structure in Silicon Nanoclusters

Published online by Cambridge University Press:  15 February 2011

T. Van Buuren
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
L. N. Dinh
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
L. L. Chase
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
W. J. Siekhaus
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
I. Jimenez
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
L. J. Terminello
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA, 94556
M. Grush
Affiliation:
Department of Physics, University of Tennessee, Knoxville, TN 37996
T. A. Callcott
Affiliation:
Department of Physics, University of Tennessee, Knoxville, TN 37996
J. A. Carlisle
Affiliation:
Department of Physics, Virginia Commonwealth University, Richmond, VA 23284–2000
Get access

Abstract

Density of states changes in the valence and conduction band of silicon nanoclusters were monitored using soft x-ray emission and absorption spectroscopy as a function of cluster size. A progressive increase in the valence band edge toward lower energy is found for clusters with decreasing diameters. A similar but smaller shift is observed in the near-edge x-ray absorption data of the silicon nanoclusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2.Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).Google Scholar
3.Prokes, S.M., and Glembocki, O.J., Mater. Chem. Phys. 35, 1 (1993).Google Scholar
4.Dinh, L.N., Chase, L.L., Balooch, M., Siekhaus, W.J., Wooten, F., Phys. Rev. B 54, 5029 (1996).Google Scholar
5.Jia, J.J., Callcott, T.A., Yurkas, J., Ellis, A.W., Himpsel, F.J., Samant, M.G., Ederer, D.L., Carlisle, J.A., Hudson, E.A., Terminello, L.J., Shuh, D.K., and Perera, R.C.C., Rev. Sci. Instrum. 66, 1394 (1995).Google Scholar
6.Granqvist, C.G., Buhrman, R.A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
7.van Buuren, T., Dinh, L.N., Chase, L.L. to be published.Google Scholar
8.van Buuren, T., Tiedje, T., Dahn, J.R., and Way, B.M., Appl. Phys. Lett. 63, 2911 (1993).Google Scholar
9.Eisebitt, S., Luning, J., Rubensson, J.-E., van Buuren, T., Patitsas, S.N., Tiedje, T., Berger, M., Arens-Fisher, R., Frohnhoff, S. and Eberhardt, W., Solid State Comm. 97, 549 (1996).Google Scholar
10.Miyano, K.E., Ederer, D.L., Callcott, T.A., O'Brien, W.L., Jia, J.J., Zhou, L., Dong, Q.-Y., Ma, Y., Woicik, J.C. and Mueller, D.R., Phys. Rev B 48, 1918 (1993).Google Scholar
11.Eisibitt, S., Patitsas, S.N., Tiedje, T., van Buuren, T., Luning, J., Rubensson, J.-E. and Eberhardt, W., submitted to Euro. Phys. Lett.Google Scholar