Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:11:50.532Z Has data issue: false hasContentIssue false

Stacking Fault Energies, Crystal Elasticity and Their Relation to the Mechanical Properties of L12-Ordered Alloys

Published online by Cambridge University Press:  26 February 2011

C. L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6114
M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6114
Get access

Abstract

First-principles calculations of the stacking fault energies of Ni3Al, and the linear elastic constants of Ni3Al and Pt3Al are presented. The anomalous (positive) temperature dependence of flow stress in Ni3Al and its absence in Pt3Al are fully rationalized in terms of the present results and cross-slip pinning mechanism. It is found that the elastic shear anisotropy factor plays an equally (or even more) important role than the anisotropy of antiphase-phase boundary energy in determining the plastic flow behavior of L12-ordered alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wee, D.M., Noguchi, O., Oya, Y., and Suzuki, T., Trans. Jap. Inst. Metals 21, 237 (1980).Google Scholar
2. Kear, B.H. and Wilsdorf, H.G.I., Trans. TMS-AIME 224, 382 (1962).Google Scholar
3. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 45 (1973).CrossRefGoogle Scholar
4. Paidar, V., Pope, D.P., and Vitek, V., Acta Metall. 32, 435 (1984).CrossRefGoogle Scholar
5. Wee, D.M., Pope, D.P., and Vitek, V., Acta Metall. 32, 829 (1984).Google Scholar
6. Yoo, M.H., Scripta Metall. 20, 915 (1986); Acta Metall. 35 1559 (1987); Mater. Res. Soc. Sym. Proc. 81, 207 (1987).Google Scholar
7. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A.J., Phys. Rev. B 24, 814 (1981); C.L. Fu, M. Weinert, and A.J. Freeman (unpublished).Google Scholar
8. Fu, C.L. and Yoo, M.H., Phil. Mag. Lett. 58, 199 (1988).CrossRefGoogle Scholar
9. C.L. Fu and A.J. Freeman (to be published); Freeman, A.J., Fu, C.L., and Lee, J.I., Bull. Amer. Phys. Soc. 32, 772 (1987).Google Scholar
10. Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864 (1964).CrossRefGoogle Scholar
11. Hedin, L. and Lundqvist, B.I., J. Phys. C 4, 2064 (1971).Google Scholar
12. Douin, J., Veyssière, P., and Beauchamp, P., Phil. Mag. A 54, 375 (1986).Google Scholar
13. Mills, M.J. (private communication), 1988.Google Scholar
14. Foiles, S.M. and Daw, M.S., J. Mater. Res. 2, 5 (1987).Google Scholar
15. Chen, S.P., Voter, A.J., and Srolovitz, D.J., Scr. Metall. 20, 1389 (1986); A.F. Voter, D.J. Srolovitz, and S.P. Chen, MRS Sym. I Proc. (1986).Google Scholar
16. Ono, K. and Stern, R., Trans. TMS-AIME 245, 171 (1969).Google Scholar
17. Kayser, F.X. and Stassis, C., Phys. Status Solidi A 64, 335 (1981).Google Scholar
18. Stroh, A. N., Phil. Mag. 3, 625 (1958).CrossRefGoogle Scholar