Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T12:59:55.802Z Has data issue: false hasContentIssue false

STRESS-MODULATED DRIVING FORCE FOR LITHIATION REACTION IN HOLLOW NANO-SPHERICAL ANODES

Published online by Cambridge University Press:  25 February 2014

Zheng Jia
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, U.S.A.
Teng Li
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, U.S.A.
Get access

Abstract

Recent experimental evidence on nano-particle and nano-wire silicon anodes showed an initial rapid velocity of reaction front at the initial stage of lithiation, followed by an apparent slowing or even halting of the reaction front propagation. This intriguing phenomenon is attributed to the lithiation-induced mechanical stresses across the reaction front which is believed to play an important role in the kinetics of reaction at the front. Here, through theoretical formulation, we presented a comprehensive study on lithiation-induced stress field and its contribution to the driving force of lithiation in hollow spherical anodes with different boundary conditions at the inner surface of the particle. Our results reveal that hollow spherical silicon anodes can be lithiated more easily than solid spherical silicon particles and thus may serve as an optimal design of high performance anodes of lithium-ion battery.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, W. J., J. Power Sources, 196, 13 (2011)CrossRefGoogle Scholar
Chan, C. K., Peng, H. L., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., and Cui, Y., Nat. Nanotechnol., 3, 31 (2008).CrossRefGoogle Scholar
Takamura, T., Ohara, S., Uehara, M., Suzuki, J., and Sekine, K., J. Power Sources, 129, 96 (2004).CrossRefGoogle Scholar
Baggetto, L., Danilov, D., and Notten, P. H. L., Adv. Mater., 23, 1563 (2011)CrossRefGoogle Scholar
Sun, C. F., Karki, K., Jia, Z., Liao, H. W., Zhang, Y., Li, T., Qi, Y., Cumings, J., Rubloff, G. W., Wang, Y. H., ACS nano, 7(3), pp 27172724 (2013)CrossRefGoogle Scholar
Wan, J. Y., Kaplan, A. F., Jia, Z., Han, X. G., Chen, Y. C., Weadock, N. J., Faenza, N., Lacey, S., Li, T., Guo, J., Hu, L. B., J. Mater. Chem. A, DOI: 10.1039/C3TA13546B (2014)Google Scholar
Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L. B., Nix, W. D., and Cui, Y., Nano Lett., 11, 2949 (2011).CrossRefGoogle Scholar
Zhao, K. J., Wang, W. L., Gregoire, J., Pharr, M., Suo, Z. G., Vlassak, J. J., Kaxiras, E., Nano Lett., 11, 2962 (2011).CrossRefGoogle Scholar
Liu, X., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L. Q., Liu, Y., Kushima, A., Liang, W. T., Wang, J. W., Cho, J. H., Epstein, E., Dayeh, S. A., Picraux, S. T., Zhu, T., Li, J., Sullivan, J. P., Cumings, J., Wang, C. S., Mao, S., Ye, Z. Z., Zhang, S. L., and Huang, J. Y., Nano Lett., 11, 3312 (2011).CrossRefGoogle Scholar
Karki, K., Epstein, E., Cho, J. H., Jia, Z., Li, T., Picraux, S. T., Wang, C. S., Cumings, J., Nano Lett., 12(3), pp 13921397 (2012)CrossRefGoogle Scholar
Yang, H., Huang, S., Huang, X., Fan, F., Liang, W., Liu, X. H., Huang, J. Y., Li, J., Zhu, T. and Zhang, S., Nano Letters, 12, 19531958 (2012)CrossRefGoogle Scholar
Zhao, K. J., Pharr, M., Wan, Q., Wang, W. L., Kaxiras, E., Vlassak, J. J., Suo, Z. G., J. Electrochem. Soc., 159(3), A238A243 (2012)CrossRefGoogle Scholar
Zhao, K. J., Pharr, M., Hartle, L., Vlassak, J. J., Suo, Z. G., J. Power Sources, 218, 614 (2012)CrossRefGoogle Scholar
Liu, X. H., Fan, F., Yang, H., Zhang, S. L., Huang, J. Y. and Zhu, T., ACS Nano, 7, 14951503 (2013)CrossRefGoogle Scholar
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C.M., Nix, W.D., Cui, Y., Adv. Mater., 24(45), pp 60346041 (2012)CrossRefGoogle Scholar