Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T21:50:06.813Z Has data issue: false hasContentIssue false

Structural Evolution of Fe Rich Fe-Al Alloys During Ball Milling and Subsequent Heat Treatment

Published online by Cambridge University Press:  10 February 2011

H. G. Jiang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine. Irvine, CA 92697–2575, jhang@eng.uci.edu
R. J. Perez
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine. Irvine, CA 92697–2575, jhang@eng.uci.edu
M. L. Lau
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine. Irvine, CA 92697–2575, jhang@eng.uci.edu
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine. Irvine, CA 92697–2575, jhang@eng.uci.edu
Get access

Abstract

X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have been utilized to investigate the structural evolution of Fe rich Fe-Al alloys during ball milling. It is found that b.c.c. solid solutions can be formed either through ball milling alone or through ball milling together with heat treatment. Thermal diagrams of the milled Fe-Al powders reveal exothermic peaks corresponding to the formation of cc-Fe(Al) solid solution (in both Fe-4wt.%Al and Fe-10wt.%Al) and the formation of FeAl intermetallic compound (in Fe-10wt.%Al). The transformation kinetics of cc-Fe(Al) solid solution in Fe-4wt.%Al were found to follow the Johnson-Mehl-Avrami equation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Enzo, S., Frattini, R., Gupta, R., Macri, P.P., Principi, G., Schiffini, L. and Scipione, G., Acta Mater. 44, p. 3,105(1996).Google Scholar
2. Morris, D.G. and Günther, S., Acta Mater. 44, p. 2,847 (1996).Google Scholar
3. Bonetti, E., Scipione, G., Valdré, G., Enzo, S., Frattini, R. and Macri, P.P., J. Mater. Sci. 30, p. 2, 220(1995).Google Scholar
4. Wolski, K., Le Caer, G., Delcroix, P., Fillit, R., Thevenot, F. and Le Coze, J., Mater. Sci. Eng. A207, p. 97(1996).Google Scholar
5. Rawers, J., Slavens, G., Govier, D., Dogan, C. and Doan, R., Metall. Mater. Trans. 27A, p. 3, 126 (1996).Google Scholar
6. Perez, R.J., Huang, B. and Lavernia, E.J., NanoStructured Mater. 7, p. 565 (1996).Google Scholar
7. Perez, R.J., Jiang, H.G. and Lavernia, E.J., NanoStructured Mater. 1996, in press.Google Scholar
8. Pearson, W.B. in Handbook of lattice spacings and structures of metals. Pergamon Press, London, Vol. 2, 1967, p. 560.Google Scholar
9. Selected values of thermodynamic properties of metals and alloys, edited by Hultgren, R., Orr, R.L., Anderson, P.D., Kelley, K.K., John Wiley & Sons, Inc., 1963, p. 415.Google Scholar
10. Shaikh, A.S. and Vest, G.M., J. Am. Ceram. Soc. 69, 682 (1986).Google Scholar
11. Kissinger, H.E., Anal. Chem. 29, 1, 702(1957).Google Scholar
12. Hood, G.M., Phil. Mag. 21, 305 (1970).Google Scholar
13. Vignes, A., Philibert, J., Badia, N., Diffusion Data 3, 269 (1969).Google Scholar
14. Bellon, P. and Averbach, R.B., Phys. Rev. Lett. 74, 1, 819(1995).Google Scholar
15. Clevenger, L.A., Thompson, C.V. and Cammarata, R.C., Appl. Phys. Lett. 52, 795 (1988).Google Scholar
16. Jiang, H.G., Dai, J.Y., Tong, H.Y., Ding, B.Z., Hu, Z.Q. and Song, Q.H., J. Appl. Phys. 74, 6, 165(1993).Google Scholar