Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T09:01:47.305Z Has data issue: false hasContentIssue false

Structural Studies of Copper Sulfide Film Growth: Influence of Humidity

Published online by Cambridge University Press:  15 February 2011

M. J. Campin
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
J. G. Zhu
Affiliation:
New Mexico State Univ, Dept of Physics, Las Cruces, NM;
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
J. W. Braithwaite
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
P. P. Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
Get access

Abstract

Copper is a critical material in electrical components and is subject to atmospheric sulfidation. This study characterized the product formed when Cu is exposed to a dilute (50-200ppb) H2S atmosphere at low (0.5%) to high (80%) relative humidity (RH). An important observation was that the Cu2S growth rate for long times is significantly higher for sulfides formed at low RH compared to high RH. In addition, it was found that for both low and high RH sulfidation, copper reacts to form the low chalcocite phase (Cu2S) as identified by x-ray and electron diffraction. Cross-section and plan-view TEM revealed that the Cu2S grains formed at high RH are 20-50 nm in size with a large amount of porosity, whereas the grains formed at low RH are 75-150+ nm and appear to undergo grain growth with little porosity as the film thickens.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graedel, T. E., Nassau, K. and Franey, J. P., Corros. Sci. 27, 639 (1987).Google Scholar
2. Wang, W., Langford, W. and Muraka, S., Appl. Phys. Lett. 68, 1622 (1996).Google Scholar
3. Do, T., Splinter, S., Chen, C. and McIntyre, N., Surf. Sci. 387, 192 (1997).Google Scholar
4. Graedel, T. E., Franey, J. P. and Kammlott, G. W., Corros. Sci. 23, 1141 (1983).Google Scholar
5. Graedel, T. E., Franey, J. P., Gualtieri, G. J., Kammlott, G. W. and Malm, D. L., Corros. Sci. 25, 1163 (1985).Google Scholar
6. Graedel, T. E., Franey, J. P., Kammlott, G. W., Vandenberg, J. M. and Key, P. L., J. Electrochem. Soc. 134, 1632 (1987).Google Scholar
7. Sharma, S. P., J. Electrochem. Soc. 127, 21 (1980).Google Scholar
8. Watanabe, M., Tomita, M. and Ichino, T., J. Electrochem. Soc. 148, B522 (2001).Google Scholar
9. Phillips, V. A., J. Appl. Phys. 33, 712 (1962).Google Scholar
10. Erb, U., Gleiter, H. and Schwitzgebel, G., Acta. Met. 30, 1377 (1982).Google Scholar
11. Chatlopadhyay, B. and Sadigh-Esfandiary, S., Corros. Sci. 13, 747 (1973)Google Scholar
12. Takeda, M., Fueki, K. and Mukaibo, T., J. Electrochem. Soc. Jpn. 36, 95 (1968).Google Scholar
13. Leygraf, C. and Graedel, T. E. in Atmospheric Corrosion (John Wiley and Sons, New York, 2000), p.44.Google Scholar
14. Jeff, Braithwaite, Sandia National Laboratories, private communication.Google Scholar
15. Graedel, T. E., Corros. Sci. 27, 721 (1987).Google Scholar
16. Slatt, B. J., Natusch, D. S., Prospero, J. M. and Savoie, D. L., Atmos. Environ. 12, 981 (1978).Google Scholar
17. Adamson, A. W., A Textbook of Physical Chemistry (Academic Press, New York, 1973).Google Scholar
18. Wright, A. F. and Nelson, J. S., J. Appl. Phys. 92, 5849 (2002).Google Scholar
19.Cu2S PDF card no. 33–0490, International Center for Diffraction Data, Newton Square, PA.Google Scholar
20. Barbour, J. C., Braithwaite, J. W. and Wright, A. F., Nucl. Instr. Meth. Phys. Res., Sec. B, 175-177, 382 (2001).Google Scholar