Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T17:58:10.702Z Has data issue: false hasContentIssue false

Structure of Chemically Passivated Semiconductor Surfaces Determined Using X-Ray Absorption Spectroscopy

Published online by Cambridge University Press:  10 February 2011

A. P. Hitchcock
Affiliation:
Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1
T. Tyliszczak
Affiliation:
Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1
Z. H. Lu
Affiliation:
Dept. of Metallurgy and Materials Science, University of Toronto, Toronto, ON M5S 3E4
P. Brodersen
Affiliation:
Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1
M. W. C. Dharmawardana
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON KIA 0R6
Get access

Abstract

The structure of monolayer-passivated single crystal semiconductor surfaces has been studied using synchrotron radiation X-ray absorption fine structure spectroscopy (XAFS). The near edge and extended fine structure signals, supported in some cases by first-principles calculations, have been used to investigate Ge(111)-Cl; GaAs(111)-Cl; GaAs(111)A-S, GaAs(111)B-S and GaAs(001)-S. The use of a solid state Ge X-ray fluorescence array detector has led to significant improvements in data quality and thus structural accuracy. The relationship between the derived surface structures and the development of improved passivated surfaces is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., and Bright, T.B., Phys. Rev. Lett. 57, 249 (1986).Google Scholar
2. Lu, Z.H., Progress in Surface Science 50 335 (1995).Google Scholar
3. Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C., and Bahat, R., Appl. Phys. Lett. 50, 256 (1987).Google Scholar
4. Driad, R., Lu, Z.H., Charbonneau, S., McKinnon, W.R., Laframboise, S., Poole, P., and McAlister, S.P., Appl. Phys. Lett. 73, 665 (1998).Google Scholar
5. Lu, Z.H., Graham, M.J., Feng, X.H., and Yang, B.X., Appl. Phys. Lett. 60, 2773(1992).Google Scholar
6. Ohno, T., Phys. Rev. B 44, 6306 (1991).Google Scholar
7. Jin, J.M., M.W.C. Dharma-wardana, Lockwood, D.J., Aers, G.C., Lu, Z.H., and Lewis, L.J., Phys. Rev. Lett. 75, 878 (1995).Google Scholar
8. Qin, X.R., Lu, Z.H., Shapter, J.G., Coatsworth, L.L., Griffiths, K., and Norton, P.R., J. Vac. Sci. Technol. A16, 163 (1998).Google Scholar
9. Sugiyama, M., Maeyama, S., Oshima, M., Phys. Rev. B 60, 11037 (1993).Google Scholar
10. Moriarty, P., Murphy, B., Roberts, L., Cafolla, A.A., Hughes, G., Koenders, L., Bailey, P., Woolf, D.A., Appl. Phys. Lett. 67, 383 (1995).Google Scholar
11. Anderson, G.W. and Norton, P.R., Phys. Rev. Lett. 74, 2764 (1995).Google Scholar
12. He, J., Lu, Z.H., Mitchell, S.A., and Wayner, D.M., J. Am. Chem. Soc. 120, 2660 (1998).Google Scholar
13. Lindford, M.R., Fenter, P., Eisenberger, P.M., and Chidsey, C.E.D., J. Am Chem. Soc. 117, 3145 (1995).Google Scholar
14. Lu, Z.H., Appl. Phys. Lett. 68, 520 (1996).Google Scholar
15. Lee, P.A., Citrin, P.H., Eisenberger, P.E. and Kincaid, B.M., Rev. Mod. Phys. 53769 (1981).Google Scholar
16. D.C., Koningsberger and R., Prins, (eds) X-ray Absorption: Principles, Applications and Techniques of XAFS, SEXAFS and XANES (Wiley, NY, 1988)Google Scholar
17. Oyanagi, H., Recent Progress in X-ray Absorption Fine Structure, Res. Electrotechnical Laboratory, No. 966 (1994)Google Scholar
18. Bringans, R.D., Uhrberg, R.I.G., Bachrach, R.Z. and Northrup, J.E., Phys. Rev. Lett. 55, 533 (1985).Google Scholar
19. Citrin, P.H., Rowe, J.E., Eisenberger, P. and Comin, F., Physica B 117, 786 (1983); P.H. Citrin, J.E. Rowe, and P. Eisenberger, Phys. Rev. B 28, 2299 (1983).Google Scholar
20. Oyanagi, H., Shioda, R., Kuwahara, Y. and Haga, K., J. Synchrotron Rad. 2, 99 (1995).Google Scholar
21. Pascarelli, S., Boscherini, F., Lamberti, C. and Mobilio, S., Phys. Rev. B 56, 1936 (1997).Google Scholar
22. Woicik, J.C., Pellegrino, J.G., Seiner, B., Miyano, K.E., Bompadre, S.G., Sorensen, L.B., Lee, T.-L. and Khalid, S., Phys. Rev. Lett. 79, 5026 (1997).Google Scholar
23. Tyliszczak, T. and Hitchcock, A.P., Physcia B158, 335 (1989)Google Scholar
24. Hitchcock, A.P., Tyliszczak, T., Aebi, P., Feng, X.H., Lu, Z.H., Baribeau, J.-M., and Jackman, T.E., Surf. Sci. 301 260 (1994).Google Scholar
25. Tyliszczak, T., Hitchcock, A.P. and Jackman, T.E., J. Vac. Sci. Tech. A 8,2020 (1990).Google Scholar
26. Troger, L., Arvanitis, D., Baberschke, K., Michaelis, H., Grimm, U. and Zscech, E., Phys. Rev. B 46, 3283 (1992).Google Scholar
27. Lu, Z.H., Tyliszczak, T. and Hitchcock, A.P., Phys. Rev. B 58, 13820 (1998).Google Scholar
28. Ohno, T. and Shiraishi, K., Phys. Rev. B 42, 11194 (1990); T. Ohno, Surf. Sci. 255, 229 (1991).Google Scholar
29. Oigawa, H., Fan, J.-F., Nannichi, Y., Sugahara, H. and Oshima, M., Jap. J. Appl. Phys. 30, L322 (1991).Google Scholar
30. Sugiyama, M., Maeyama, S. and Oshima, M., Phys. Rev. B 50, 4905 (1994).Google Scholar
31. Lu, Z.H., Graham, M.J., Phys. Rev. B 48, 4604 (1993).Google Scholar
32. Moriarity, P., Murphy, B., Roberts, L., Cafolla, A.A., Hughes, G., Koenders, L. and Bailey, P., Phys. Rev. B 50, 14237 (1994).Google Scholar
33. Maeyama, S., Sugiyama, M. and Oshima, M., Surf. Sci. 357358, 527 (1996).Google Scholar
34. Sugiyama, M. and Maeyama, S., Surf. Sci. 385, L911 (1997).Google Scholar
35. Yang, B.X., Middleton, F., Olssen, B., Bancroft, G.M., Chen, J.M., Sham, T.K., Tan, K.H. and Wallace, D., Rev. Sci. Inst. 63 (1992) 802.Google Scholar
36. Rehr, J.J., deLeon, J. Mustre, Zabinsky, S.I., and Albers, R.C., J. Am. Chem. Soc. 113 5135 (1991); J.J Rehr, R.C. Albers and S.I. Zabinsky, Phys. Rev. Lett. 69, 3397 (1992).Google Scholar
37. Phillips, J.C., Bonds and Bands in Semiconductors, (Academic Press, New York, 1973), p. 22. 38. W. Kohn and L. J. Sham, Phys. Rev. A 140,1133 (1965).Google Scholar
39. Kleinan, L. and Bylander, D. M., Phys. Rev. Lett, 48, 1425 (1982).Google Scholar
40. Bachelet, G.B. and Schliuter, M., Phys. Rev. B 28, 2302, (1983).Google Scholar
41. Tian, Z., M.W.C. Dharma-wardana, Lu, Z.H., Cao, R., and Lewis, L.J., Phys. Rev. B 55, 5376 (1997).Google Scholar
42. Lu, Z.H., Chartenoud, F., Dion, M., Graham, M.J., Ruda, H.E., Koutzarov, I., Liu, Q., Mitchell, C.E.J., Hill, I.G., and McLean, A.B., Appl. Phys. Lett. 67, 670 (1995).Google Scholar
43. Harrison, W.A., Electronic Structure and the Properties of Solids, (Dover, New York, 1989).Google Scholar
44. Pauling, L., The Nature of the Chemical Bond, (Cornell, Ithaca, 1960), p.246.Google Scholar
45. Jiang, G.P. and Ruda, H.E., Appl. Phys. Lett. 67, 3334 (1995).Google Scholar
46. Dahma-wardana, C., Lu, Z.H., Tyliszczak, T., and Hitchcock, A.P. (to be published).Google Scholar
47. Nannichi, Y., Fan, J.-F., Oigawa, H. and Koma, A., Jap. J. Appl. Phys. 27, L2367 (1988)Google Scholar
48. Sandroff, C.J., Nottenberg, R.N., Bischoff, T.C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
49. Sugahara, H., Oshima, M., Oigawa, H. and Nannichi, Y., Thin. Sol. Films 220, 212 (1992).Google Scholar
50. Tsukumoto, S., Koguchi, N., Jap. J. Appl. Phys. 33, Li 185 (1994); Appl. Phys. Lett. 65, 2201(1994).Google Scholar
51. Tao, Y., Yelon, A., Sacher, E., Lu, Z.H., and Graham, M.J., in “Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing”, edited by R., Nemanich, C.R., Helms, M., Hirose, and G.W., Rubloff, MRS Proceedings 259, pp293 (MRS, Pittsburg, 1992).Google Scholar
52. Chauvistre, J. et al., Chem. Phys. 223, 293 (1997).Google Scholar
53. Maeyama, S., Sugiyama, M. and Oshima, M., J. Electron Spectrosc. 80, 209 (1996).Google Scholar