Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T10:40:57.777Z Has data issue: false hasContentIssue false

Studying the Adsorption of Polymers and Biomolecules on Surfaces Using Enhanced Sampling Methods

Published online by Cambridge University Press:  11 July 2012

Michael P. Allen
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
Adam D Swetnam
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
Get access

Abstract

We discuss how to use Wang-Landau simulations in an efficient manner to investigate the statistical mechanics of individual lattice polymers and peptides adsorbed at a planar surface. For nearest neighbor interactions, we show that a single Wang-Landau simulation, recording the density of states as a function of numbers of internal contacts and of surface beads, is sufficient to give a full description of the phase behavior of both adsorbed and desorbed states of single molecules. It is not necessary to introduce a second confining wall. Moreover, moves are never rejected due to overlap with the surface.

The proposed “wall-free” method has already been applied to homo-polymers and hetero-polymers (lattice peptides using the HP model) on a uniform surface, and on regularly patterned surfaces. We give here a specific example to indicate how the relative adsorption strengths of a given peptide on different surfaces may be calculated.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lau, K. F. and Dill, K. A., Macromolecules 22, 3986 (1989).10.1021/ma00200a030Google Scholar
2. Li, Y. W., Wüst, T. and Landau, D. P., Comput. Phys. Commun. 182, 1896 (2011).10.1016/j.cpc.2010.12.049Google Scholar
3. Lesh, N., Mitzenmacher, M. and Whitesides, S., in Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology, RECOMB, edited by Vingron, M., Istrail, S., Pevzner, P. and Waterman, M. (ACM, New York, 2003) pp. 188195.Google Scholar
4. Bachmann, M. and Janke, W., J. Chem. Phys. 120, 6779 (2004).10.1063/1.1651055Google Scholar
5. Schiemann, R., Bachmann, M. and Janke, W., Comput. Phys. Commun. 166, 8 (2005).10.1016/j.cpc.2004.09.011Google Scholar
6. Bachmann, M. and Janke, W., Phys. Rev. Lett. 95, 058102 (2005).10.1103/PhysRevLett.95.058102Google Scholar
7. Bachmann, M. and Janke, W., Phys. Rev. E 73, 020901 (2006).10.1103/PhysRevE.73.020901Google Scholar
8. Bachmann, M. and Janke, W., Phys. Rev. E 73 041802 (2006).10.1103/PhysRevE.73.041802Google Scholar
9. Rampf, F., Binder, K. and Paul, W., J. Polym. Sci. B 44, 2542 (2006).10.1002/polb.20908Google Scholar
10. Zhang, J. F., Kou, S. C. and Liu, J. S., J. Chem. Phys. 126, 225101 (2007).10.1063/1.2736681Google Scholar
11. Cheng, Y., Liu, G. R., Li, Z. R., Lu, C. and Mi, D., J. Phys. D 41, 055308 (2008).10.1088/0022-3727/41/5/055308Google Scholar
12. Luettmer-Strathmann, J., Rampf, F., Paul, W. and Binder, K., J. Chem. Phys. 128, 064903 (2008).10.1063/1.2837459Google Scholar
13. Owczarek, A L, Rechnitzer, A, Krawczyk, J and Prellberg, T, J. Phys. A 40, 13257 (2007).10.1088/1751-8113/40/44/007Google Scholar
14. Krawczyk, J., Owczarek, A. L., Prellberg, T. and Rechnitzer, A., Europhys. Lett. 70, 726 (2005).10.1209/epl/i2004-10524-7Google Scholar
15. Vrbová, T. and Whittington, S. G., J. Phys. A 31, 3989 (1998).10.1088/0305-4470/31/17/009Google Scholar
16. Singh, Y., Giri, D. and Kumar, S., J. Phys. A 34, L67 (2001).10.1088/0305-4470/34/8/102Google Scholar
17. Wüst, T. and Landau, D. P., Comput. Phys. Commun. 179, 124 (2008).10.1016/j.cpc.2008.01.028Google Scholar
18. Wüst, T., Li, Y. W. and Landau, D. P., J. Stat. Phys. 144, 638 (2011).10.1007/s10955-011-0266-zGoogle Scholar
19. Möddel, M., Janke, W. and Bachmann, M., Macromolecules 44, 9013 (2011).10.1021/ma201307cGoogle Scholar
20. Radhakrishna, M., Sharma, S. and Kumar, S. K., J Chem. Phys. 136, 114114 (2012).10.1063/1.3691669Google Scholar
21. Swetnam, A. D. and Allen, M. P., Phys. Chem. Chem. Phys. 11, 2046 (2009).10.1039/b818067aGoogle Scholar
22. Swetnam, A. D. and Allen, M. P., J. Comput. Chem. 32, 816 (2011).10.1002/jcc.21660Google Scholar
23. Swetnam, A. D., Brett, C. and Allen, M. P., Phys. Rev. E 85, 031804 (2012).10.1103/PhysRevE.85.031804Google Scholar
24. Swetnam, A. D. and Allen, M. P., Physics Procedia. (to appear).Google Scholar
25. Wang, F. G. and Landau, D. P., Phys. Rev. Lett. 86, 2050 (2001).10.1103/PhysRevLett.86.2050Google Scholar
26. Wang, F. G. and Landau, D. P., Phys. Rev. E 64, 056101 (2001).10.1103/PhysRevE.64.056101Google Scholar
27. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E., J. Chem. Phys. 21, 1087 (1953).10.1063/1.1699114Google Scholar
28. Frenkel, D. and Smit, B., Understanding Molecular Simulation (2 nd edition, Academic Press, 2002).Google Scholar
29. Landau, D. P. and Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics (3 rd edition, Cambridge University Press, 2009).10.1017/CBO9780511994944Google Scholar
30. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon Press, 1989).Google Scholar
31. Yue, K. Z. and Dill, K. A.. Phys. Rev. E 48, 2267 (1993).10.1103/PhysRevE.48.2267Google Scholar