No CrossRef data available.
Article contents
Surface Plasmon Resonance Responses of Au-SnOx Nanocomposite Films
Published online by Cambridge University Press: 31 January 2011
Abstract
Au-SnOx nanocomposite thin films composed of gold nanoparticles embedded in SnOx matrix were prepared by pulsed laser deposition technique and their crystal structure, morphology and chemical composition were evaluated by low angle X-ray diffraction, field-emission scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. For the nanocomposite films with high Au percentage, the surfaces of nanocomposite films are very smooth, while for the films with low Au percentage, the films consist of many embedded Au nanoparticles with particle size of 5-20 nm. The XRD results revealed that in the nanocomposite films Au existed in a polycrystalline phase while SnOx in an amorphous phase. Surface plasmon resonance (SPR) responses of the Au-SnOx nanocomposite thin films were investigated as functions of Au percentage and film thickness in the Kretschmann geometry of attenuated total reflection using a polarized light beam at the wavelength of 640 nm. The reflectance minima (SPR dip) of SPR responses of the Au-SnOx nanocomposite films appeared at higher values of incident angle than that of a pure Au film and as the Au percentage decreases the SPR angles shift to higher values and the widths also become broader. The potential use of Au-SnOx nanocomposite films for SPR gas sensing was discussed.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010