Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T13:59:11.044Z Has data issue: false hasContentIssue false

Switching speed in Resistive Random Access Memories (RRAMS) based on plastic semiconductor

Published online by Cambridge University Press:  22 June 2011

Paulo F. Rocha
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Henrique L. Gomes
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Asal Kiazadeh
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Qian Chen
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Dago M. de Leeuw
Affiliation:
Philips Research Labs, High Tech. Campus, 5656 AE Eindhoven, The Netherlands
Stefan C. J. Meskers
Affiliation:
Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

This work addresses non-volatile memories based on metal-oxide polymer diodes. We make a thorough investigation into the static and dynamic behavior. Current-voltage characteristics with varying voltage ramp speed demonstrate that the internal capacitive double-layer structure inhibits the switching at high ramp rates (typical 1000 V/s). This behavior is explained in terms of an equivalent circuit.

It is also reported that there is not a particular threshold voltage to induce switching. Voltages below a particular threshold can still induce switching when applied for a long period of time. The time to switch is longer the lower is the applied voltage and follows an exponential behavior. This suggests that for a switching event to occur a certain amount of charge is required.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. and Salaneck, W. R., Nature, 397, 121128 (1999).Google Scholar
2. Kwok, K. S. and Ellenbogen, J. C., Moletronics, 5, 2837 (2002).Google Scholar
3. Simmons, J.G., Verderber, R.R., in Mathematical and Physical Sciences, (Roy. Soc. Lond. Proc. 1464, Ser. A 301 79 (1967) pp. 77102.Google Scholar
4. Verbakel, F., Meskers, S. C. J., Janssen, R. A. J., Gomes, H. L., Biggelaar, A. J. M. and Leeuw, D. M., Org. Electron 9, 829833 (2008).Google Scholar
5. Gomes, H.L., Benvenho, A.R., de Leeuw, D.M., Cölle, M., Stallinga, P., Verbakel, F. and Taylor, D.M., Org. Electron 9, 119 (2008).Google Scholar
6. Wang, M. L., Zhou, J., Gao, X. D., Ding, B. F., Shi, Z., Sun, X. Y., Ding, X. M., and Hou, X. Y., Appl. Phys. Lett. 91, 143511 (2007).Google Scholar