Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:07:05.384Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Carbon Nanotube-Nickel/Nickel Oxide Core/shell Nanoparticle Heterostructures Incorporated in Polyvinyl Alcohol Hydrogel

Published online by Cambridge University Press:  01 February 2011

Wenwu Shi
Affiliation:
nchopra@bama.ua.edu, The University of Alabama, Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Tuscaloosa, Alabama, United States
Kristy Crews
Affiliation:
nchopra@mint.ua.edu, The University of West Alabama, Department of Chemistry (NSF-REU Fellow 2009), Livingston, Alabama, United States
Nitin Chopra
Affiliation:
nchopra@eng.ua.edu, The University of Alabama, Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Tuscaloosa, Alabama, United States
Get access

Abstract

Carbon nanotube (CNT)-nickel/nickel oxide (Ni/NiO) core/shell nanoparticles (CNC) heterostructures were prepared in a unique single-step synthetic route by direct chemical precipitation of nanoparticles on CNT surface. Chemical vapor deposition (CVD)-grown CNTs (average diameter ˜42.7±12.3 nm) allowed for direct nucleation and uniform coating of Ni/NiO core/shell nanoparticles (average diameter ˜11.8±1.7 nm). The crystal structure, morphology, and phases in CNC heterostructures were studied using high resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Subsequently, the as-produced CNC heterostructures were incorporated into polyvinyl alcohol (PVA) hydrogel resulting in CNC heterostructure-PVA hydrogel with ˜ 75% water absorbing capability. These novel hydrogels were also characterized by SEM and showed actuation under 0.2 T magnet. They are promising for smart analytical devices and platform.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hunyadi, S. E. and Li, T. Li, J. Phys. Chem. B 109, 13857 (2005).Google Scholar
2 Hu, J., Odom, T. W. and Lieber, C. M., Acc. Chem. Res. 32, 435, (1999).Google Scholar
3 Meyyappan, M., “Carbon nanotubes: Science and applications applications”, CRC Press LLC, (2005, Boca Raton, FL).Google Scholar
4 Lauhon, L. J., Gudiksen, M. S. and Lieber, C. M., Phil. Trans. R. Soc. Lond. A. 362, 1247, (2004).Google Scholar
5 Chopra, N., Claypoole, L. and Bachas, L. G., NSTI Nanotech 2009 Proc Proc. 1, 187, (2009).Google Scholar
6 Chopra, N., Majumder, M. and Hinds, B. J., Adv. Funct. Mater. 15, 858, (2005).Google Scholar
7 Peng, X., Chen, J., Misewich, J. A. and Wong, S. S., Chem. Soc. Rev. 38, 1076 (2009).Google Scholar
8 Quinn, B. M., Dekker, C. and Lemay, S. G., J. Am. Chem. Soc. 127, 6146, (2005).Google Scholar
9 Tzitzios, V., Georgakilas, V., Oikonomou, E., Karakassides, M. and Petridis, D., Carbon, 44, 848, (2006).Google Scholar
10 Zhang, R., Bowyer, A., Eisenthal, R. and Hubble, J., Biotech. Bioeng. 97, 976, (2006).Google Scholar
11 Qiu, Y. and Park, K., Adv. Drug Del. Rev. 53, 321, (2001).Google Scholar
12 Peppas, N. A., Hilt, J. Z., Khademhosseini, A. and Langer, R., Adv. Mater. 18, 1345, (2006).Google Scholar
13 Langer, R. and Tirrell, D. A., Nature 428, 487, (2004).Google Scholar
14 Peppas, N. A. and Stauffer, S. R., J. Control. Rel. 16, 305, (1991).Google Scholar
15 Pardo-Yissar, V., Gabai, R., Shipway, A. N., Bourenko, T. and Willner, I.. Gold, Adv. Mater. 13, 1320, (2001).Google Scholar
16 Kozlovskaya, V., Kharlampieva, E., Khanal, B. P., Manna, P., Zubarev, E. R. and Tsukruk, V. V., Chem. Mater Mater. 20, 7474, (2008).Google Scholar
17 Shi, J., Guo, Z. Z.-X., Zhan, B., Luo, H., Li, Y. and Zhu, D., J. Phys. Chem. B 109, 14789, (2005).Google Scholar
18 Chopra, N., Kichambare, P. D., Andrews, R. and Hinds, B.J., Nano Lett. 2, 1177, (2002).Google Scholar
19 Chopra, N., Claypoole, L. and Bachas, L. G., J. Nanopart. Res. In press (2010).Google Scholar
20 Kwok, R.W.M., XPS Peak Fitting Program for WIN95/98 XPSPEAK Version 4.1, Department of Chemistry, The Chinese University of Hong Kong.Google Scholar
21 Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J J. P ., Tasis, D., Siokou, A., Kallitsis, I. and arthenios, C., Galiotis aliotis, Carbon 46, 833 (2008).Google Scholar
22 Moulder, J. F., W. F, Stickle, Sobol, P. E. and Bomben, K. D, Handbook of X X-ray Photoelectron Spectroscopy, 1995, Physical Electronics, Inc.Google Scholar
23 Guzelian, A. A., Katari, J. E. B., Kadavanich, A. V., Banin, U., Hamad, K., Juban, E., Alivisatos, A. P., Wolters, R. H., Arnold, C. C. and Heath, J. R., J. Phys. Chem. 100, 7212, (1996).Google Scholar
24 Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M. and Yavarinia, N., Inorg. Chim Chim. Acta 362, 3691 (2009).Google Scholar
25 Garcia-Cerda, L. A., Romo-Mendoza, L. E. and Quevedo-Lopez, M.A., J Mater Mater. Sci Sci. 44, 4553 (2009).Google Scholar