Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T11:56:26.521Z Has data issue: false hasContentIssue false

Theoretical Considerations on the Growth of Metallic Crystalline Superlattices

Published online by Cambridge University Press:  26 February 2011

J. H. Van Der Merwe
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, Republic of, South Africa
M. W. H. Braun
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, Republic of, South Africa
Get access

Abstract

We deliberate on the conditions favorable to the growth of metallic crystalline superlattices (MCS) with (111) f.c.c./(110) b.c.c. interfaces. We use, with some motivation, equilibrium criteria (i) to justify the occurrence of the Kurdjumov-Sachs (KS) and Nishiyama-Wassermann (NW) orientations, and to show with analyses which also allow for elastic relaxation, that only the NW orientation that occurs at n.n. distance ratios in the interval 0.8 ≲ bf.c.c / ab.c.c ≲ 1.0 can yield the regular orientational relationships required for high quality MCS; ahd(ii) to show that, for the acquisition of the required smoothness of the interfaces, which is mainly determined by the growth mode - monolayer-by-monolayer (FM = Frank-van der Merwe) or island nucleation and growth (VW ≊ Volmer-Weber) mode - it is desirable to use material combinations with small surface free energy mismatch. Only then can VW growth (which inevitably occurs in each superlattice period) at relatively high supersaturation be FM-like and with low density of defects.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENces

1. Falco, C.M., and Schuller, I.K., in Synthetic Modulated Structures/VLSI, edited by Chang, L.L., and Giessen, B. C. (Academic Press, Orlando, 1985)Google Scholar
2. McWhan, D.B., Mat. Res. Symp. Proc, Vol 37, Materials Research Society, 1985, p. 493.Google Scholar
3. Bauer, E., and Jan H., van der Merwe, Phys. Rev. B33, 3657 (1986)Google Scholar
4. Ramirez, R., Rahman, A., and Schuller, K., Phys. Rev. B30, 6208 (1984)CrossRefGoogle Scholar
5. Bruce, L.A., and Jaeger, H., Philos. Mag. A38, 223 (1978)CrossRefGoogle Scholar
6. Jan H., van der Merwe, Philos. Mag. A45, 145 (1982).Google Scholar
7. Royer, L., Bull. Soc. Franc Mineral. Grist. 51., 7 (1928)Google Scholar
8. Takayanagi, K., Yagi, K., and Honjo, G., Thin Solid Films 48, 137 (1978).Google Scholar
9. Frank, F.C., and van der Merwe, J.H.; Proc. Roy. Soc. London, Ser. A 198, 205 (1949); 198, 216 (1949).Google Scholar
10. Reiss, H., J. Appl. Phys, 39, 5045 (1968).Google Scholar
11. Gotoh, Y., and Arai, I., Jpn. J. Appl. Phys. 25, L583 (1986)CrossRefGoogle Scholar
12. Steele, W.A., Surface Sci. 36, 317 (1973).CrossRefGoogle Scholar
13. Bruch, L. W. and Venables, J.A., Surface Sci 148, 167 (1984)CrossRefGoogle Scholar
14. Stoop, P.M., and Snyman, J.A., Surface Sci. (Submitted)Google Scholar
15. Jan H., van der Merwe, and Braun, M. W. H., Appl. Surface Sci. 22/23, 545 (1985).Google Scholar
16. Braun, M.W.H., Ph.D. Thesis, University of Pretoria, Pretoria, 1986.Google Scholar
17. Venables, J.A., Derrien, J., and Jansen, A.P., Surface Sci. 95, 411 (1980).CrossRefGoogle Scholar
18. Bauer, E., Z. Kristallogr. 110, 372 (1958).CrossRefGoogle Scholar
19. Markov, I., and Kaischew, R., Thin Solid Films 32, 163 (1976).Google Scholar