Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T16:55:17.827Z Has data issue: false hasContentIssue false

Theoretical Study of Bulk and Surface Properties of Digenite Cu2–δS

Published online by Cambridge University Press:  10 February 2011

P. A. Korzhavyi
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala UniversitySE-75121 Uppsala, Sweden
I. A. Abrikosov
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala UniversitySE-75121 Uppsala, Sweden
B. Johansson
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala UniversitySE-75121 Uppsala, Sweden
Get access

Abstract

In connection with the problems of mid-temperature embrittlement and sulfide corrosion of copper, we perform an ab initio study of intrinsic properties of copper(I) sulfide in the anti-fluorite crystal structure (digenite). The energies of the (111) and (110) non-polar surfaces of Cu2S are calculated using the interface Green's function technique. The (111) surface is found to have the lowest energy, in agreement with the cleavage pattern of digenite mineral. The locally self-consistent Green's function method is used to obtain the formation and interaction energies of native point defects in bulk digenite. The results show that digenite exists as a non-stoichiometric compound Cu2–δS with stable (constitutional) cation vacancies, in agreement with experiment. This natural presence of constitutional cation vacancies combined with the calculated low formation energy of Frenkel defects implies a high cation mobility in Cu2–δS, which is consistent with the superionic behavior of digenite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Perea, N. M., in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W. J. and Triay, I. R. (Mater. Res. Soc. Proc. 465, Pittsburgh, PA, 1997) p. 1153.Google Scholar
[2] Motamedi, M. and Pedersen, K., this volume.Google Scholar
[3] Bucur, R. V. and Berger, R., Solid State Ionics 76, 291 (1995).Google Scholar
[4] Berger, R. and Bucur, R. V., Solid State Ionics 89, 269 (1996).Google Scholar
[5] Boyce, J. B. and Huberman, B. A., Phys. Rep. 51, 189 (1979).Google Scholar
[6] Henderson, P. J., Österberg, J. O., and Ivarsson, B., Technical Report TR 92-04 (SKB, Stockholm, 1992).Google Scholar
[7] Korzhavyi, P. A., Abrikosov, I. A., Johansson, B., Acta Mater. 47, 1417 (1999).Google Scholar
[8] Skriver, H. L. and Rosengaard, N. M., Phys. Rev. B 46, 7157 (1992).Google Scholar
[9] Abrikosov, I. A., Niklasson, A. M. N., Simak, S. I., Johansson, B., Ruban, A. V., and Skriver, H. L., Phys. Rev. Lett. 76, 4203 (1996).Google Scholar
[10] Korzhavyi, P. A., Abrikosov, I. A., Johansson, B., Ruban, A. V., and Skriver, H. L., Phys. Rev. B 59, 11693 (1999).Google Scholar
[11] Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Ohio, 1985) Vol. 2, p. 2005.Google Scholar
[12] Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
[13] The System of Mineralogy of Dana, J. D. and Dana, E. S., 7th edited by Palache, C., Berman, H., and Frondel, C. (John Wiley & Sons, NY, 1944) Vol. 1, p. 180.Google Scholar
[14] Chakrabarti, D. J. and Laughlin, D. E., in Binary Alloy Phase Diagrams, Second Edition, ed. by Massalski, T. B. (ASM International, 1990) p. 1467.Google Scholar
[15] Korzhavyi, P. A., Abrikosov, I. A., and Johansson, B., in High-Temperature Ordered Intermetallic Alloys VIII, edited by George, E. P., Yamaguchi, M., and Mills, M. J. (Mater. Res. Soc. Proc. 552, Pittsburgh, PA, 1999) pp. KK5.35.18.Google Scholar
[16] Gezalov, M. A., Gasimov, G. B., Asadov, Yu. G., Guseinov, G. G., and Belov, N. V., Soy. Phys. Crystallogr. 24, 700 (1979).Google Scholar
[17] Kashida, S. and Yamamoto, K., J. Phys.: Condens. Matter 3, 6559 (1991).Google Scholar
[18] Manolikas, C., Delavignette, P., and Amelinckx, S., Phys. Status Solidi A33, K77 (1976).Google Scholar
[19] Conde, C., Manolikas, C., Van-Dyck, D., Delavignette, P., J. Van Landuyt, and Amelinckx, S., Mat. Res. Bull. 13, 1055 (1978).Google Scholar
[20] Van-Dyck, D., Conde-Amiano, C., and Amelinckx, S., Phys. Status Solidi A 58, 451 (1980).Google Scholar
[21] Gray, J. N. and Clarke, R., Phys. Rev. B 33, 2056 (1986).Google Scholar
[22] Gurevich, Yu. Ya. and Kharkats, Yu. I., Phys. Rep. 139, 203 (1986).Google Scholar